IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.02872.html
   My bibliography  Save this paper

Feasibility trade-offs in decarbonisation of power sector with high coal dependence: A case of Korea

Author

Listed:
  • Minwoo Hyun
  • Aleh Cherp
  • Jessica Jewell
  • Yeong Jae Kim
  • Jiyong Eom

Abstract

Decarbonisation of the power sector requires feasible strategies for rapid phase-out of fossil fuels and expansion of low-carbon sources. This study develops and uses a model with an explicit account of power plant stocks to explore plausible decarbonization scenarios of the power sector in the Republic of Korea through 2050 and 2060. The results show that achieving zero emissions from the power sector by the mid-century requires either ambitious expansion of renewables backed by gas-fired generation equipped with carbon capture and storage or significant expansion of nuclear power. The first strategy implies replicating and maintaining for decades maximum growth rates of solar power achieved in leading countries and becoming an early and ambitious adopter of the CCS technology. The alternative expansion of nuclear power has historical precedents in Korea and other countries but may not be acceptable in the current political and regulatory environment.

Suggested Citation

  • Minwoo Hyun & Aleh Cherp & Jessica Jewell & Yeong Jae Kim & Jiyong Eom, 2021. "Feasibility trade-offs in decarbonisation of power sector with high coal dependence: A case of Korea," Papers 2111.02872, arXiv.org.
  • Handle: RePEc:arx:papers:2111.02872
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.02872
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Kim, Dong Wook & Chang, Hyun Joon, 2012. "Experience curve analysis on South Korean nuclear technology and comparative analysis with South Korean renewable technologies," Energy Policy, Elsevier, vol. 40(C), pages 361-373.
    3. Turnheim, Bruno & Geels, Frank W., 2013. "The destabilisation of existing regimes: Confronting a multi-dimensional framework with a case study of the British coal industry (1913–1967)," Research Policy, Elsevier, vol. 42(10), pages 1749-1767.
    4. Rosen, Richard A. & Guenther, Edeltraud, 2015. "The economics of mitigating climate change: What can we know?," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 93-106.
    5. Frank W. Geels & Frans Berkhout & Detlef P. van Vuuren, 2016. "Bridging analytical approaches for low-carbon transitions," Nature Climate Change, Nature, vol. 6(6), pages 576-583, June.
    6. Kevin Anderson & Jessica Jewell, 2019. "Debating the bedrock of climate-change mitigation scenarios," Nature, Nature, vol. 573(7774), pages 348-349, September.
    7. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    8. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    9. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    10. Gert Jan Kramer & Martin Haigh, 2009. "No quick switch to low-carbon energy," Nature, Nature, vol. 462(7273), pages 568-569, December.
    11. Barbara Koelbl & Machteld Broek & André Faaij & Detlef Vuuren, 2014. "Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise," Climatic Change, Springer, vol. 123(3), pages 461-476, April.
    12. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    13. Gunnar Luderer & Robert C. Pietzcker & Samuel Carrara & Harmen-Sytze de Boer & Shinichiro Fujimori & Nils Johnson & Silvana Mima & Douglas Arent, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Post-Print hal-01515408, HAL.
    14. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    15. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    16. Stijn van Ewijk & Will McDowall, 2020. "Diffusion of flue gas desulfurization reveals barriers and opportunities for carbon capture and storage," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    17. Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
    18. Jessica Jewell & Vadim Vinichenko & Lola Nacke & Aleh Cherp, 2019. "Prospects for powering past coal," Nature Climate Change, Nature, vol. 9(8), pages 592-597, August.
    19. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).
    20. Roger Pielke & Tom Wigley & Christopher Green, 2008. "Dangerous assumptions," Nature, Nature, vol. 452(7187), pages 531-532, April.
    21. Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.
    22. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    23. Gokul C. Iyer & Leon E. Clarke & James A. Edmonds & Brian P. Flannery & Nathan E. Hultman & Haewon C. McJeon & David G. Victor, 2015. "Improved representation of investment decisions in assessments of CO2 mitigation," Nature Climate Change, Nature, vol. 5(5), pages 436-440, May.
    24. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear power supply: Going against the misconceptions. Evidence of nuclear flexibility from the French experience," Energy, Elsevier, vol. 151(C), pages 289-296.
    25. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    26. Cherp, Aleh & Vinichenko, Vadim & Jewell, Jessica & Suzuki, Masahiro & Antal, Miklós, 2017. "Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan," Energy Policy, Elsevier, vol. 101(C), pages 612-628.
    27. Harvey, L.D. Danny, 2014. "Global climate-oriented building energy use scenarios," Energy Policy, Elsevier, vol. 67(C), pages 473-487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Gupta & Akshoy Ranjan Paul & Nawshad Haque, 2023. "Life cycle assessment of carbon capture and storage in saline aquifers for coal‐fired power generation: An Indian scenario," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(1), pages 81-98, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    2. Cotterman, Turner, 2019. "Why Rapid and Deep Decarbonization isn’t Simple: Linking Bottom-up Socio-technical Decision-making Insights with Top-down Macroeconomic Analyses," Conference papers 333088, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    4. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    5. Schwanitz, Valeria Jana, 2021. "Evaluating integrated assessment models of global climate change - From philosophical aspects to practical examples," SocArXiv 63yd8, Center for Open Science.
    6. Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
    7. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    8. Haris Doukas & Alexandros Nikas & Giorgos Stamtsis & Ioannis Tsipouridis, 2020. "The Green Versus Green Trap and a Way Forward," Energies, MDPI, vol. 13(20), pages 1-6, October.
    9. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    10. Arjan Kirkels & Vince Evers & Gerrit Muller, 2021. "Systems Engineering for the Energy Transition: Potential Contributions and Limitations," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    11. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    12. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    13. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    14. Abdulla Kaya & Denes Csala & Sgouris Sgouridis, 2017. "Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models: a critical review and recommendations," Climatic Change, Springer, vol. 145(1), pages 27-40, November.
    15. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    16. Gurgel, Angelo & Mignone, Bryan K. & Morris, Jennifer & Kheshgi, Haroon & Mowers, Matthew & Steinberg, Daniel & Herzog, Howard & Paltsev, Sergey, 2023. "Variable renewable energy deployment in low-emission scenarios: The role of technology cost and value," Applied Energy, Elsevier, vol. 344(C).
    17. Peter A. Lang, 2017. "Nuclear Power Learning and Deployment Rates; Disruption and Global Benefits Forgone," Energies, MDPI, vol. 10(12), pages 1-21, December.
    18. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Krumm, Alexandra & Süsser, Diana & Blechinger, Philipp, 2022. "Modelling social aspects of the energy transition: What is the current representation of social factors in energy models?," Energy, Elsevier, vol. 239(PA).
    20. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.02872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.