IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v123y2014i3p495-509.html
   My bibliography  Save this article

Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

Author

Listed:
  • Alexander Popp
  • Steven Rose
  • Katherine Calvin
  • Detlef Vuuren
  • Jan Dietrich
  • Marshall Wise
  • Elke Stehfest
  • Florian Humpenöder
  • Page Kyle
  • Jasper Vliet
  • Nico Bauer
  • Hermann Lotze-Campen
  • David Klein
  • Elmar Kriegler

Abstract

In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Alexander Popp & Steven Rose & Katherine Calvin & Detlef Vuuren & Jan Dietrich & Marshall Wise & Elke Stehfest & Florian Humpenöder & Page Kyle & Jasper Vliet & Nico Bauer & Hermann Lotze-Campen & Dav, 2014. "Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options," Climatic Change, Springer, vol. 123(3), pages 495-509, April.
  • Handle: RePEc:spr:climat:v:123:y:2014:i:3:p:495-509
    DOI: 10.1007/s10584-013-0926-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0926-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0926-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hermann Lotze‐Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. Popp, Alexander & Krause, Michael & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Leimbach, Marian & Beringer, Tim & Bauer, Nico, 2012. "Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy," Ecological Economics, Elsevier, vol. 74(C), pages 64-70.
    4. Felix Creutzig & Alexander Popp & Richard Plevin & Gunnar Luderer & Jan Minx & Ottmar Edenhofer, 2012. "Reconciling top-down and bottom-up modelling on future bioenergy deployment," Nature Climate Change, Nature, vol. 2(5), pages 320-327, May.
    5. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    6. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    7. van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calvin, Katherine V. & Beach, Robert & Gurgel, Angelo & Labriet, Maryse & Loboguerrero Rodriguez, Ana Maria, 2016. "Agriculture, forestry, and other land-use emissions in Latin America," Energy Economics, Elsevier, vol. 56(C), pages 615-624.
    2. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    3. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    4. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    5. Haruka Ohashi & Tomoko Hasegawa & Akiko Hirata & Shinichiro Fujimori & Kiyoshi Takahashi & Ikutaro Tsuyama & Katsuhiro Nakao & Yuji Kominami & Nobuyuki Tanaka & Yasuaki Hijioka & Tetsuya Matsui, 2019. "Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Amandine Valérie Pastor & Joao Pedro Nunes & Rossano Ciampalini & Haithem Bahri & Mohamed Annabi & Mohamed Chikhaoui & Armand Crabit & Stéphane Follain & Jan Jacob Keizer & Jérôme Latron & Feliciana L, 2022. "ScenaLand: a simple methodology for developing land use and management scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-29, December.
    7. Keith D. Harris & Harvey S. James, 2016. "The Production of Food and Fiber: An Adaptation of CoP Features for Sustainable Water Use in Agribusiness," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    8. Hongjie Sun & Shuwen Niu & Xiqiang Wang, 2019. "Future Regional Contributions for Climate Change Mitigation: Insights from Energy Investment Gap and Policy Cost," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    9. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    10. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    11. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    12. P. A. Turner & K. J. Mach & D. B. Lobell & S. M. Benson & E. Baik & D. L. Sanchez & C. B. Field, 2018. "The global overlap of bioenergy and carbon sequestration potential," Climatic Change, Springer, vol. 148(1), pages 1-10, May.
    13. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    14. Xinhai Lu & Zhoumi Li & Hongzheng Wang & Yifeng Tang & Bixia Hu & Mingyue Gong & Yulong Li, 2022. "Evaluating Impact of Farmland Recessive Morphology Transition on High-Quality Agricultural Development in China," Land, MDPI, vol. 11(3), pages 1-19, March.
    15. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    16. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    17. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    18. Camilla C. N. Oliveira & Gerd Angelkorte & Pedro R. R. Rochedo & Alexandre Szklo, 2021. "The role of biomaterials for the energy transition from the lens of a national integrated assessment model," Climatic Change, Springer, vol. 167(3), pages 1-22, August.
    19. Xu Deng & Fei Teng & Minpeng Chen & Zhangliu Du & Bin Wang & Renqiang Li & Pan Wang, 2024. "Exploring negative emission potential of biochar to achieve carbon neutrality goal in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Austin, K.G. & Jones, J.P.H. & Clark, C.M., 2022. "A review of domestic land use change attributable to U.S. biofuel policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    21. Steven K Rose & Nico Bauer & Alexander Popp & John Weyant & Shinichiro Fujimori & Petr Havlik & Marshall Wise & Detlef P Vuuren, 2020. "An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change," Climatic Change, Springer, vol. 163(3), pages 1539-1551, December.
    22. Eriksson, Mathilda & Brännlund, Runar & Lundgren, Tommy, 2018. "Pricing forest carbon: Implications of asymmetry in climate policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 84-93.
    23. Fridahl, Mathias, 2017. "Socio-political prioritization of bioenergy with carbon capture and storage," Energy Policy, Elsevier, vol. 104(C), pages 89-99.
    24. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    2. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    3. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    4. Felix Creutzig & Christoph von Stechow & David Klein & Carol Hunsberger & Nico Bauer & Alexander Popp & Ottmar Edenhofer, 2012. "Can Bioenergy Assessments Deliver?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    5. Thierry Brunelle & Patrice Dumas, 2012. "Can Numerical Models Estimate Indirect Land-use Change?," Working Papers 2012.65, Fondazione Eni Enrico Mattei.
    6. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    7. Wu, Wenchao & Hasegawa, Tomoko & Fujimori, Shinichiro & Takahashi, Kiyoshi & Oshiro, Ken, 2020. "Assessment of bioenergy potential and associated costs in Japan for the 21st century," Renewable Energy, Elsevier, vol. 162(C), pages 308-321.
    8. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    9. Florian Leblanc & C. Cassen & Thierry Brunelle & Patrice Dumas & Aurélie Méjean, 2014. "Globis final report on Integrated Scenarios D30," CIRED Working Papers hal-01300545, HAL.
    10. Camilla C. N. Oliveira & Gerd Angelkorte & Pedro R. R. Rochedo & Alexandre Szklo, 2021. "The role of biomaterials for the energy transition from the lens of a national integrated assessment model," Climatic Change, Springer, vol. 167(3), pages 1-22, August.
    11. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    12. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    13. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    14. Marshall A. Wise, Haewon C. McJeon, Katherine V. Calvin, Leon E. Clarke, and Page Kyle, 2014. "Assessing the Interactions among U.S. Climate Policy, Biomass Energy, and Agricultural Trade," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    15. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    16. Eriksson, Mathilda & Brännlund, Runar & Lundgren, Tommy, 2018. "Pricing forest carbon: Implications of asymmetry in climate policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 84-93.
    17. Jing-Li Fan & Qian Wang & Xian Zhang, 2021. "A bibliometric analysis of the water-energy-food nexus based on the SCIE and SSCI database of the Web of Science," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-26, February.
    18. Saygin, D. & Gielen, D.J. & Draeck, M. & Worrell, E. & Patel, M.K., 2014. "Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1153-1167.
    19. Calvin, Katherine V. & Beach, Robert & Gurgel, Angelo & Labriet, Maryse & Loboguerrero Rodriguez, Ana Maria, 2016. "Agriculture, forestry, and other land-use emissions in Latin America," Energy Economics, Elsevier, vol. 56(C), pages 615-624.
    20. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:123:y:2014:i:3:p:495-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.