IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p959-d213317.html
   My bibliography  Save this article

Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance

Author

Listed:
  • Xinkai Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    Key Laboratory of Wind Energy Utilization, Chinese Academy of Sciences, Beijing 100190, China
    Dalian National Laboratory for Clean Energy, CAS, Beijing 100190, China)

  • Ke Yang

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    Key Laboratory of Wind Energy Utilization, Chinese Academy of Sciences, Beijing 100190, China
    Dalian National Laboratory for Clean Energy, CAS, Beijing 100190, China
    Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaodong Wang

    (College of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

To explore the effect of the height of vortex generators (VGs) on the control effect of boundary-layer flow, the vortex characteristics of a plate and the aerodynamic characteristics of an airfoil for VGs were studied by both wind tunnel experiments and numerical methods. Firstly, the ratio of VG height ( H ) to boundary layer thickness ( δ ) was studied on a flat plate boundary layer; the values of H are 0.1 δ , 0.2 δ , 0.5 δ , 1.0 δ , 1.5 δ , and 2.0 δ . Results show that the concentrated vortex intensity and VG height present a logarithmic relationship, and vortex intensity is proportional to the average kinetic energy of the fluid in the height range of the VG. Secondly, the effects of height on the aerodynamic performance of airfoils were studied in a wind tunnel using three VGs with H = 0.66δ, 1.0δ, and 1.33δ. The stall angle of the airfoil with and without VGs is 18° and 8°, respectively, so the VGs increase the stall angle by 10°. The maximum lift coefficient of the airfoil with VGs increases by 48.7% compared with the airfoil without VGs, and the drag coefficient of the airfoil with VGs is 84.9% lower than that of the airfoil without VGs at an angle of attack of 18°. The maximum lift–drag ratio of the airfoil with VGs is lower than that of the airfoil without VGs, so the VGs do not affect the maximum lift–drag ratio of the airfoil. However, a VG does increase the angle of attack of the best lift–drag ratio.

Suggested Citation

  • Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:959-:d:213317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Macquart, Terence & Maheri, Alireza & Busawon, Krishna, 2014. "Microtab dynamic modelling for wind turbine blade load rejection," Renewable Energy, Elsevier, vol. 64(C), pages 144-152.
    2. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    3. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    4. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    5. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    6. Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Influence of an off-surface small structure on the flow control effect on horizontal axis wind turbine at different relative inflow angles," Energy, Elsevier, vol. 160(C), pages 101-121.
    7. Unai Fernandez-Gamiz & Macarena Gomez-Mármol & Tomas Chacón-Rebollo, 2018. "Computational Modeling of Gurney Flaps and Microtabs by POD Method," Energies, MDPI, vol. 11(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Pengzhong & Wang, Lu & Huang, Bin & Wu, Rui & Wang, Yu, 2024. "The effects of vortex generators on the characteristics of the tip hydrofoil and the horizontal axis tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    2. Shunlei Zhang & Xudong Yang & Bifeng Song, 2021. "Numerical Investigation of Performance Enhancement of the S809 Airfoil and Phase VI Wind Turbine Blade Using Co-Flow Jet Technology," Energies, MDPI, vol. 14(21), pages 1-20, October.
    3. Mostafa, Wafaa & Abdelsamie, Abouelmagd & Sedrak, Momtaz & Thévenin, Dominique & Mohamed, Mohamed H., 2022. "Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance," Energy, Elsevier, vol. 244(PA).
    4. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    2. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    3. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    4. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & José Antonio Ramos-Hernanz, 2020. "Cell-Set Modelling for a Microtab Implementation on a DU91W(2)250 Airfoil," Energies, MDPI, vol. 13(24), pages 1-15, December.
    5. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    6. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    7. Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
    8. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    9. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    10. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Computational Methods for Modelling and Optimization of Flow Control Devices," Energies, MDPI, vol. 13(14), pages 1-15, July.
    11. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    12. Mostafa, Wafaa & Abdelsamie, Abouelmagd & Sedrak, Momtaz & Thévenin, Dominique & Mohamed, Mohamed H., 2022. "Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance," Energy, Elsevier, vol. 244(PA).
    13. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    14. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    15. Chengyong Zhu & Tongguang Wang & Jianghai Wu, 2019. "Numerical Investigation of Passive Vortex Generators on a Wind Turbine Airfoil Undergoing Pitch Oscillations," Energies, MDPI, vol. 12(4), pages 1-19, February.
    16. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    17. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
    18. Mereu, Riccardo & Passoni, Stefano & Inzoli, Fabio, 2019. "Scale-resolving CFD modeling of a thick wind turbine airfoil with application of vortex generators: Validation and sensitivity analyses," Energy, Elsevier, vol. 187(C).
    19. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    20. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:959-:d:213317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.