IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3710-d386613.html
   My bibliography  Save this article

Computational Methods for Modelling and Optimization of Flow Control Devices

Author

Listed:
  • Alejandro Ballesteros-Coll

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Unai Fernandez-Gamiz

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Iñigo Aramendia

    (Department of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, Spain)

  • Ekaitz Zulueta

    (Automatic Control and System Engineering Department, University of the Basque Country UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain)

  • Jose Manuel Lopez-Guede

    (Automatic Control and System Engineering Department, University of the Basque Country UPV/EHU, Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain)

Abstract

Over the last few years, the advances in size and weight for wind turbines have led to the development of flow control devices. The current work presents an innovative method to model flow control devices based on a cell-set model, such as Gurney flaps (GFs). This model reuses the cells which are around the required geometry and a wall boundary condition is assigned to the generated region. Numerical simulations based on RANS equations and with Re = 2 × 10 6 have been performed. Firstly, a performance study of the cell-set model on GFs was carried out by comparing it with a fully mesh model of a DU91W250 airfoil. A global relative error of 1.13% was calculated. Secondly, optimum GF lengths were determined (from 0% to 2% of c) for a DU97W300 airfoil and an application of them. The results showed that for lower angles of attack (AoAs) larger GFs were needed, and as the AoA increased, the optimum GF length value decreased. For the purpose of studying the effects generated by two flow control devices (vortex generators (VGs) and optimum GF) working together, a triangular VG based on the jBAY model was implemented. Resulting data indicated, as expected, that when both flow control devices were implemented, higher C L and lower C D values appeared.

Suggested Citation

  • Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Computational Methods for Modelling and Optimization of Flow Control Devices," Energies, MDPI, vol. 13(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3710-:d:386613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.
    2. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    3. Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Aitor Saenz-Aguirre & Daniel Teso-Fz-Betoño, 2019. "Parametric Study of a Gurney Flap Implementation in a DU91W(2)250 Airfoil," Energies, MDPI, vol. 12(2), pages 1-14, January.
    4. Ruben Gutierrez-Amo & Unai Fernandez-Gamiz & Iñigo Errasti & Ekaitz Zulueta, 2018. "Computational Modelling of Three Different Sub-Boundary Layer Vortex Generators on a Flat Plate," Energies, MDPI, vol. 11(11), pages 1-21, November.
    5. Unai Fernandez-Gamiz & Macarena Gomez-Mármol & Tomas Chacón-Rebollo, 2018. "Computational Modeling of Gurney Flaps and Microtabs by POD Method," Energies, MDPI, vol. 11(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Ballesteros-Coll & Koldo Portal-Porras & Unai Fernandez-Gamiz & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2021. "Rotating Microtab Implementation on a DU91W250 Airfoil Based on the Cell-Set Model," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    2. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & José Antonio Ramos-Hernanz, 2020. "Cell-Set Modelling for a Microtab Implementation on a DU91W(2)250 Airfoil," Energies, MDPI, vol. 13(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    2. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    3. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & José Antonio Ramos-Hernanz, 2020. "Cell-Set Modelling for a Microtab Implementation on a DU91W(2)250 Airfoil," Energies, MDPI, vol. 13(24), pages 1-15, December.
    4. Mattia Basso & Carlo Cravero & Davide Marsano, 2021. "Aerodynamic Effect of the Gurney Flap on the Front Wing of a F1 Car and Flow Interactions with Car Components," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Alejandro Ballesteros-Coll & Koldo Portal-Porras & Unai Fernandez-Gamiz & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2021. "Rotating Microtab Implementation on a DU91W250 Airfoil Based on the Cell-Set Model," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    6. Iñigo Errasti & Unai Fernández-Gamiz & Pablo Martínez-Filgueira & Jesús María Blanco, 2019. "Source Term Modelling of Vane-Type Vortex Generators under Adverse Pressure Gradient in OpenFOAM," Energies, MDPI, vol. 12(4), pages 1-21, February.
    7. Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
    8. Aitor Saenz-Aguirre & Unai Fernandez-Gamiz & Ekaitz Zulueta & Alain Ulazia & Jon Martinez-Rico, 2019. "Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    9. Borja González-Arcos & Pedro Javier Gamez-Montero, 2023. "Aerodynamic Study of MotoGP Motorcycle Flow Redirectors," Energies, MDPI, vol. 16(12), pages 1-32, June.
    10. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    11. Zhaohuang Zhang & Weiwei Li, 2022. "Calculation of the Strength of Vortex Currents Induced by Vortex Generators on Flat Plates and the Evaluation of Their Performance," Energies, MDPI, vol. 15(7), pages 1-15, March.
    12. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    13. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    14. Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.
    15. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    16. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    17. Andrés Meana-Fernández & Jesús Manuel Fernández Oro & Katia María Argüelles Díaz & Sandra Velarde-Suárez, 2019. "Turbulence-Model Comparison for Aerodynamic-Performance Prediction of a Typical Vertical-Axis Wind-Turbine Airfoil," Energies, MDPI, vol. 12(3), pages 1-16, February.
    18. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    19. Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Aitor Saenz-Aguirre & Daniel Teso-Fz-Betoño, 2019. "Parametric Study of a Gurney Flap Implementation in a DU91W(2)250 Airfoil," Energies, MDPI, vol. 12(2), pages 1-14, January.
    20. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3710-:d:386613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.