IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029030.html
   My bibliography  Save this article

Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance

Author

Listed:
  • Mostafa, Wafaa
  • Abdelsamie, Abouelmagd
  • Sedrak, Momtaz
  • Thévenin, Dominique
  • Mohamed, Mohamed H.

Abstract

Adding micro-cylinder as a passive flow control is a new trend to enhance the power output of wind turbines. The impact of adding micro-cylinder, with different configurations, around horizontal axis wind turbine blade (HAWT) is examined using 3-dimensional simulations. The conventional turbine National Renewable Energy Laboratory (NREL Phase II) straight-bladed wind turbine is selected to validate the present numerical arrangements, where it hasn't been tested before with adding micro-cylinder. The Reynolds Average Navier-Stokes (RANS) equations for steady-state incompressible flow combined with Shear Stress Transport (k-ω SST) turbulence model are employed for the current numerical analysis. In this study, a parametric study is conducted for different diameters and locations of micro-cylinder. In total, seven cases are examined. The influence of micro-cylinder size is examined by changing the cylinder diameter (three different diameters, diameter/chord = 0.0131, 0.0175, 0.022). It has been found that the output power increases with decreasing the micro-cylinder diameter. The effect of micro-cylinder locations is investigated by introducing four different cases (four different locations around the leading edge). The power output increases for all cases. Additionally, it has been found that locating the micro-cylinder on the pressure side has less effect on the power output comparing to locating it on front of the blade leading edge.

Suggested Citation

  • Mostafa, Wafaa & Abdelsamie, Abouelmagd & Sedrak, Momtaz & Thévenin, Dominique & Mohamed, Mohamed H., 2022. "Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029030
    DOI: 10.1016/j.energy.2021.122654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    2. Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge," Energy, Elsevier, vol. 143(C), pages 1107-1124.
    3. Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
    4. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    5. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    6. Yonghui Xie & Jianhui Chen & Huancheng Qu & Gongnan Xie & Di Zhang & Mohammad Moshfeghi, 2013. "Numerical and Experimental Investigation on the Flow Separation Control of S809 Airfoil with Slot," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-14, December.
    7. Majid Asli & Behnam Mashhadi Gholamali & Abolghasem Mesgarpour Tousi, 2015. "Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading Edge Bump," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed, Ahmed M. & Khalifa, Mohamed A. & Benini, Ernesto & Aziz, Mohamed A., 2023. "Experimental and numerical investigations of aerodynamic characteristics for wind turbine airfoil using multi-suction jets," Energy, Elsevier, vol. 275(C).
    2. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    2. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    3. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    4. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    5. Abdelsalam, Ali M. & El-Askary, W.A. & Kotb, M.A. & Sakr, I.M., 2021. "Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile," Energy, Elsevier, vol. 216(C).
    6. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    7. Shunlei Zhang & Xudong Yang & Bifeng Song, 2021. "Numerical Investigation of Performance Enhancement of the S809 Airfoil and Phase VI Wind Turbine Blade Using Co-Flow Jet Technology," Energies, MDPI, vol. 14(21), pages 1-20, October.
    8. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    9. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    10. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    11. Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
    12. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    13. Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Yang, Hua, 2017. "Verification of a novel innovative blade root design for wind turbines using a hybrid numerical method," Energy, Elsevier, vol. 141(C), pages 1661-1670.
    14. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
    15. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    16. Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
    17. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    18. Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).
    19. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    20. Açıkel, Halil Hakan & Serdar Genç, Mustafa, 2018. "Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface," Energy, Elsevier, vol. 165(PA), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.