IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1300-d147986.html
   My bibliography  Save this article

Wind Turbine Power Curve Upgrades

Author

Listed:
  • Davide Astolfi

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
    These authors contributed equally to this work.)

  • Francesco Castellani

    (Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
    These authors contributed equally to this work.)

  • Ludovico Terzi

    (Renvico srl, Via San Gregorio 34, 20124 Milano, Italy
    These authors contributed equally to this work.)

Abstract

Full-scale wind turbine is a mature technology and therefore several retrofitting techniques have recently been spreading in the industry to further improve the efficiency of wind kinetic energy conversion. This kind of interventions is costly and, furthermore, the energy improvement is commonly estimated under the hypothesis of ideal wind conditions, but real ones can be very different because of wake interactions and/or wind shear induced by the terrain. A precise quantification of the energy gained in real environment is therefore precious. Wind turbines are subjected to non-stationary conditions and therefore it makes little sense to compare energy production before and after an upgrade: the post-upgrade production should rather be compared to a model of the pre-upgrade production under the same conditions. Since the energy improvement is typically of the order of few percents, a very precise model of wind turbine power output is needed and therefore it should be data-driven. Furthermore, the formulation of the model is heavily affected by the features of the available data set and by the nature of the problem. The objective of this work is the discussion of some wind turbine power curve upgrades on the grounds of operational data analysis. The selected test cases are: improved start-up through pitch angle adjustment near the cut-in, aerodynamic blade retrofitting by means of vortex generators and passive flow control devices, and extension of the power curve through a soft cut-out strategy for very high wind speed. The criticality of each test case is discussed and appropriate data-driven models are formulated. These are employed to estimate the energy improvement from each of the upgrades under investigation. The general outcome of this work is a catalog of generalizable methods for studying wind turbine power curve upgrades. In particular, from the study of the selected test cases, it arises that complex wind conditions might affect wind turbine operation such that the production improvement is non-negligibly different from what can be estimated under the hypothesis of ideal wind conditions. A complex wind flow might actually impact on the efficiency of vortex generators and the soft cut-out strategies at high wind speeds. The general lesson is therefore that it is very important to estimate wind turbine upgrades on real environments through operational data.

Suggested Citation

  • Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1300-:d:147986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    2. Pelletier, Francis & Masson, Christian & Tahan, Antoine, 2016. "Wind turbine power curve modelling using artificial neural network," Renewable Energy, Elsevier, vol. 89(C), pages 207-214.
    3. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    4. Unai Fernandez-Gamiz & Ekaitz Zulueta & Ana Boyano & Igor Ansoategui & Irantzu Uriarte, 2017. "Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices," Energies, MDPI, vol. 10(6), pages 1-15, May.
    5. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    6. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    7. Grassi, Stefano & Junghans, Sven & Raubal, Martin, 2014. "Assessment of the wake effect on the energy production of onshore wind farms using GIS," Applied Energy, Elsevier, vol. 136(C), pages 827-837.
    8. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
    9. Carrillo, C. & Obando Montaño, A.F. & Cidrás, J. & Díaz-Dorado, E., 2013. "Review of power curve modelling for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 572-581.
    10. Hwangbo, Hoon & Ding, Yu & Eisele, Oliver & Weinzierl, Guido & Lang, Ulrich & Pechlivanoglou, Georgios, 2017. "Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study," Renewable Energy, Elsevier, vol. 113(C), pages 1589-1597.
    11. Petrović, Vlaho & Bottasso, Carlo L., 2017. "Wind turbine envelope protection control over the full wind speed range," Renewable Energy, Elsevier, vol. 111(C), pages 836-848.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    2. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    3. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    4. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    5. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    6. Unai Fernandez-Gamiz & Macarena Gomez-Mármol & Tomas Chacón-Rebollo, 2018. "Computational Modeling of Gurney Flaps and Microtabs by POD Method," Energies, MDPI, vol. 11(8), pages 1-19, August.
    7. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    8. Aitor Saenz-Aguirre & Unai Fernandez-Gamiz & Ekaitz Zulueta & Alain Ulazia & Jon Martinez-Rico, 2019. "Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    9. Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.
    10. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    11. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    12. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
    13. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    14. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    15. Iñigo Aramendia & Unai Fernandez-Gamiz & Ekaitz Zulueta & Aitor Saenz-Aguirre & Daniel Teso-Fz-Betoño, 2019. "Parametric Study of a Gurney Flap Implementation in a DU91W(2)250 Airfoil," Energies, MDPI, vol. 12(2), pages 1-14, January.
    16. Aitor Saenz-Aguirre & Ekaitz Zulueta & Unai Fernandez-Gamiz & Javier Lozano & Jose Manuel Lopez-Guede, 2019. "Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control," Energies, MDPI, vol. 12(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    2. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
    3. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
    4. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    5. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    6. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    7. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    8. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    9. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    10. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    11. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2020. "Wind turbine power curve modeling for reliable power prediction using monotonic regression," Renewable Energy, Elsevier, vol. 147(P1), pages 214-222.
    12. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    13. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    14. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    15. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    16. Xu, Keyi & Yan, Jie & Zhang, Hao & Zhang, Haoran & Han, Shuang & Liu, Yongqian, 2021. "Quantile based probabilistic wind turbine power curve model," Applied Energy, Elsevier, vol. 296(C).
    17. Sergio Velázquez Medina & José A. Carta & Ulises Portero Ajenjo, 2019. "Performance Sensitivity of a Wind Farm Power Curve Model to Different Signals of the Input Layer of ANNs: Case Studies in the Canary Islands," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    18. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    19. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    20. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1300-:d:147986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.