IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316597.html
   My bibliography  Save this article

Scale-resolving CFD modeling of a thick wind turbine airfoil with application of vortex generators: Validation and sensitivity analyses

Author

Listed:
  • Mereu, Riccardo
  • Passoni, Stefano
  • Inzoli, Fabio

Abstract

Wind farms of Horizontal Axis Wind Turbines (HAWT) are increasing as number and size of single turbines and the blades with a degraded surface finish are studied as cause for decreasing of aerodynamic performance. Computational Fluid Dynamics (CFD) modeling of passive flow control devices like vortex generators is hence gaining importance to evaluate the increase in aerodynamic performance of degraded blades. This work is aimed at improving the state-of-the-art of RANS modeling of thick blades such as DU97-W-300 profile in clean configuration or equipped with VGs. The study is based on CFD scale-resolving methods (DES and SDES) to model the post-stall behavior at high Reynolds number. Furthermore, exhaustive sensitivity analyses are performed to assess the influence of time integration duration, grid span-wise resolution and domain width on the accuracy of the simulations. The results show that scale-resolving methods mark a significant step-ahead in stall simulation with respect to RANS models. Stall angle is captured with a better accuracy and the stall mechanism is reproduced in a more rigorous way. Final results present an average error of +11% on lift and −5% on drag coefficient for the clean profile and +1%/-10% respectively for the profile equipped with VGs.

Suggested Citation

  • Mereu, Riccardo & Passoni, Stefano & Inzoli, Fabio, 2019. "Scale-resolving CFD modeling of a thick wind turbine airfoil with application of vortex generators: Validation and sensitivity analyses," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316597
    DOI: 10.1016/j.energy.2019.115969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    2. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    3. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed, Ahmed M. & Khalifa, Mohamed A. & Benini, Ernesto & Aziz, Mohamed A., 2023. "Experimental and numerical investigations of aerodynamic characteristics for wind turbine airfoil using multi-suction jets," Energy, Elsevier, vol. 275(C).
    2. Junseon Park & Seungjin Lee & Joong Yull Park, 2020. "Effects of the Angled Blades of Extremely Small Wind Turbines on Energy Harvesting Performance," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
    3. Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).
    4. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    5. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    2. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    3. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    4. Chengyong Zhu & Tongguang Wang & Jianghai Wu, 2019. "Numerical Investigation of Passive Vortex Generators on a Wind Turbine Airfoil Undergoing Pitch Oscillations," Energies, MDPI, vol. 12(4), pages 1-19, February.
    5. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    6. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    7. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    8. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    9. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    10. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
    11. Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
    12. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).
    13. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    14. Zhaohuang Zhang & Weiwei Li, 2022. "Calculation of the Strength of Vortex Currents Induced by Vortex Generators on Flat Plates and the Evaluation of Their Performance," Energies, MDPI, vol. 15(7), pages 1-15, March.
    15. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    16. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    17. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    18. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    19. Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
    20. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.

    More about this item

    Keywords

    HAWT; DU97W300; VGs; DES; SDES; Stall;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.