IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p784-d209313.html
   My bibliography  Save this article

Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework

Author

Listed:
  • Matthias Rathjens

    (Hamburg University of Technology, Institute of Process and Plant Engineering, Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany)

  • Georg Fieg

    (Hamburg University of Technology, Institute of Process and Plant Engineering, Am Schwarzenberg-Campus 4, 21073 Hamburg, Germany)

Abstract

In this article an approach to incorporate a flexible cost functions framework into the cost-optimal design of heat exchanger networks (HENs) is presented. This framework allows the definition of different cost functions for each connection of heat source and sink independent of process stream or utility stream. Therefore, it is possible to use match-based individual factors to account for different fluid properties and resulting engineering costs. Layout-based factors for piping and pumping costs play an important role here as cost driver. The optimization of the resulting complex mixed integer nonlinear programming (MINLP) problem is solved with a genetic algorithm coupled with deterministic local optimization techniques. In order to show the functionality of the chosen approach one well studied HEN synthesis example from literature for direct heat integration is studied with standard cost functions and also considering additional piping costs. Another example is presented which incorporates indirect heat integration and related pumping and piping costs. The versatile applicability of the chosen approach is shown. The results represent designs with lower total annual costs (TAC) compared to literature.

Suggested Citation

  • Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:784-:d:209313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    2. Pavão, Leandro V. & Miranda, Camila B. & Costa, Caliane B.B. & Ravagnani, Mauro A.S.S., 2018. "Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach," Energy, Elsevier, vol. 142(C), pages 356-372.
    3. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    4. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
    5. Souza, Rachitha D & Khanam, Shabina & Mohanty, Bikash, 2016. "Synthesis of heat exchanger network considering pressure drop and layout of equipment exchanging heat," Energy, Elsevier, vol. 101(C), pages 484-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang, Peng & Zhao, Liwen & Liu, Guilian, 2022. "Optimal design of heat exchanger network considering the fouling throughout the operating cycle," Energy, Elsevier, vol. 241(C).
    2. Liu, Zhaoli & Yang, Lu & Yang, Siyu & Qian, Yu, 2022. "An extended stage-wise superstructure for heat exchanger network synthesis with intermediate placement of multiple utilities," Energy, Elsevier, vol. 248(C).
    3. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    4. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    5. Leopold Prendl & René Hofmann, 2021. "Case Study of Multi-Period MILP HENS with Heat Pump and Storage Options for the Application in Energy Intensive Industries," Energies, MDPI, vol. 14(20), pages 1-21, October.
    6. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Zeng, Min & Liang, Yongtu, 2021. "Heat Exchanger Network synthesis considering prohibited and restricted matches," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
    2. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    3. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    4. Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
    5. Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
    6. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    7. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    8. Tian, Yitong & Li, Shaojun, 2022. "Multi-plant direct heat integration considering coalition stability under unplanned shutdown risks," Energy, Elsevier, vol. 243(C).
    9. Pan, Huangji & Jin, Yuhui & Li, Shaojun, 2018. "Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm," Energy, Elsevier, vol. 163(C), pages 811-821.
    10. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    11. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    12. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    13. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    14. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2019. "A pinch-based automated targeting technique for heating medium system," Energy, Elsevier, vol. 166(C), pages 193-212.
    15. López-Flores, Francisco Javier & Hernández-Pérez, Luis Germán & Lira-Barragán, Luis Fernando & Rubio-Castro, Eusiel & Ponce-Ortega, José M., 2022. "Optimal Profit Distribution in Interplant Waste Heat Integration through a Hybrid Approach," Energy, Elsevier, vol. 253(C).
    16. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    17. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    18. Ji, Feng & Dong, Yachao & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2022. "Industrial park heat integration considering centralized and distributed waste heat recovery cycle systems," Applied Energy, Elsevier, vol. 318(C).
    19. Elin Svensson & Matteo Morandin & Simon Harvey & Stavros Papadokonstantakis, 2020. "Studying the Role of System Aggregation in Energy Targeting: A Case Study of a Swedish Oil Refinery," Energies, MDPI, vol. 13(4), pages 1-28, February.
    20. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:784-:d:209313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.