IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221032965.html
   My bibliography  Save this article

Multi-plant direct heat integration considering coalition stability under unplanned shutdown risks

Author

Listed:
  • Tian, Yitong
  • Li, Shaojun

Abstract

Multi-plant heat integration can increase total profits of industrial parks. The relationship among different plants can be regarded as a cooperative coalition. Current researches are mainly focused on recovering waste heat through many inter-plant heat exchangers while ignoring the stability of the multi-plant coalition. When unplanned shutdown occurs, corresponding plants may be unsatisfied with their profits due to those invalid inter-plant exchangers and prefer not to join this multi-plant cooperation. Therefore, there should be a tradeoff between inter-plant heat duties and the stability of the multi-plant cooperation. In this study, Owen-based core constraints are incorporated into a multi-plant direct HEN model to deal with cost savings and coalition stability simultaneously. Two cases compare the financial effectiveness and the profit allocation of our designs with other researches. Results show that the total costs have been reduced and each plant can receive acceptable profits from this multi-plant heat integration under shutdown risks between 0% and 100%.

Suggested Citation

  • Tian, Yitong & Li, Shaojun, 2022. "Multi-plant direct heat integration considering coalition stability under unplanned shutdown risks," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032965
    DOI: 10.1016/j.energy.2021.123047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
    2. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    3. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    4. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
    5. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
    6. Michael Hiete & Jens Ludwig & Frank Schultmann, 2012. "Intercompany Energy Integration," Journal of Industrial Ecology, Yale University, vol. 16(5), pages 689-698, October.
    7. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    8. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
    2. Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
    3. López-Flores, Francisco Javier & Hernández-Pérez, Luis Germán & Lira-Barragán, Luis Fernando & Rubio-Castro, Eusiel & Ponce-Ortega, José M., 2022. "Optimal Profit Distribution in Interplant Waste Heat Integration through a Hybrid Approach," Energy, Elsevier, vol. 253(C).
    4. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    5. Pan, Huangji & Jin, Yuhui & Li, Shaojun, 2018. "Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm," Energy, Elsevier, vol. 163(C), pages 811-821.
    6. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    7. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    8. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    9. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    10. Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
    11. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    12. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    13. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    14. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    15. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    16. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
    17. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    18. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    19. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    20. Oluleye, Gbemi & Jobson, Megan & Smith, Robin, 2015. "A hierarchical approach for evaluating and selecting waste heat utilization opportunities," Energy, Elsevier, vol. 90(P1), pages 5-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.