IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp811-821.html
   My bibliography  Save this article

Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm

Author

Listed:
  • Pan, Huangji
  • Jin, Yuhui
  • Li, Shaojun

Abstract

Multi-plant indirect heat integration via an intermediate fluid loop is an effective and energy-saving method of heat recovery. It is most suitable in practical applications because it requires fewer inter-plant pipelines and has the advantages of a simple heat exchanger network. A well-designed heat exchanger network will significantly increase economic efficiency and reduce energy consumption in plants. In this paper, a multi-plant indirect heat exchanger network model is developed for recycling heat using intermediate fluid. This model aims to minimize the total annual cost, including utility cost, number of units and heat transfer area cost. An Alopex-based evolutionary algorithm is used to optimize the model and obtain the heat capacity flow rate of intermediate fluids, the temperature of the heat transfer medium and the configuration of the superstructure simultaneously. Results from three examples demonstrate that the proposed model can perform well in multi-plant heat exchanger network synthesis.

Suggested Citation

  • Pan, Huangji & Jin, Yuhui & Li, Shaojun, 2018. "Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm," Energy, Elsevier, vol. 163(C), pages 811-821.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:811-821
    DOI: 10.1016/j.energy.2018.08.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    2. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    3. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    4. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    5. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
    6. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
    2. Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).
    3. Xiao, Wu & Wang, Kaifeng & Jiang, Xiaobin & Li, Xiangcun & Wu, Xuemei & Hao, Ze & He, Gaohong, 2019. "Simultaneous optimization strategies for heat exchanger network synthesis and detailed shell-and-tube heat-exchanger design involving phase changes using GA/SA," Energy, Elsevier, vol. 183(C), pages 1166-1177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
    2. Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
    3. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    4. Tian, Yitong & Li, Shaojun, 2022. "Multi-plant direct heat integration considering coalition stability under unplanned shutdown risks," Energy, Elsevier, vol. 243(C).
    5. López-Flores, Francisco Javier & Hernández-Pérez, Luis Germán & Lira-Barragán, Luis Fernando & Rubio-Castro, Eusiel & Ponce-Ortega, José M., 2022. "Optimal Profit Distribution in Interplant Waste Heat Integration through a Hybrid Approach," Energy, Elsevier, vol. 253(C).
    6. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    7. Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
    8. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    9. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    10. Ji, Feng & Dong, Yachao & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2022. "Industrial park heat integration considering centralized and distributed waste heat recovery cycle systems," Applied Energy, Elsevier, vol. 318(C).
    11. Ainur Munirah Hafizan & Jiří Jaromír Klemeš & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Mohd Kamaruddin Abd Hamid, 2019. "Temperature Disturbance Management in a Heat Exchanger Network for Maximum Energy Recovery Considering Economic Analysis," Energies, MDPI, vol. 12(4), pages 1-30, February.
    12. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    13. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
    14. Elin Svensson & Matteo Morandin & Simon Harvey & Stavros Papadokonstantakis, 2020. "Studying the Role of System Aggregation in Energy Targeting: A Case Study of a Swedish Oil Refinery," Energies, MDPI, vol. 13(4), pages 1-28, February.
    15. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    16. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    17. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    18. Pfeifer, Antun & Feijoo, Felipe & Duić, Neven, 2023. "Fast energy transition as a best strategy for all? The nash equilibrium of long-term energy planning strategies in coupled power markets," Energy, Elsevier, vol. 284(C).
    19. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    20. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:811-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.