IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6741-d657930.html
   My bibliography  Save this article

Case Study of Multi-Period MILP HENS with Heat Pump and Storage Options for the Application in Energy Intensive Industries

Author

Listed:
  • Leopold Prendl

    (Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9/BA, 1060 Vienna, Austria)

  • René Hofmann

    (Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9/BA, 1060 Vienna, Austria)

Abstract

The environmental goals of initiatives such as the European Green Deal, which aims to achieve climate neutrality for the EU by 2050, increase the importance of improving and optimizing industrial processes. Mathematical optimization methods like heat exchange network synthesis (HENS) are crucial tools in enabling industry to identify potential energy savings and cost reductions. The lack of publicly available industry data suitable for comprehensive testing of novel optimization procedures is often a major obstacle in development and research. To tackle this problem for extended HENS with potential heat pump and storage integration and show the potential of energy integration in energy-intensive industries (EII), the authors introduce a set of four use-cases based on representative industrial processes from the EII. The application of a previously presented a HENS approach for the integration of heat pumps and storage on these cases resulted in a potential reduction of total annual costs up to 55.43% and total external energy demand up to 87.1%. The presented cases, their solutions, and the open-access mathematical formulation of the optimization procedure make a valuable contribution to the literature and future research in the field of HENS.

Suggested Citation

  • Leopold Prendl & René Hofmann, 2021. "Case Study of Multi-Period MILP HENS with Heat Pump and Storage Options for the Application in Energy Intensive Industries," Energies, MDPI, vol. 14(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6741-:d:657930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Li & Worrell, Ernst & Patel, Martin K., 2010. "Environmental impact assessment of man-made cellulose fibres," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 260-274.
    2. Zdeněk Jegla & Vít Freisleben, 2020. "Practical Energy Retrofit of Heat Exchanger Network Not Containing Utility Path," Energies, MDPI, vol. 13(11), pages 1-16, May.
    3. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    4. Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
    5. Stampfli, Jan A. & Atkins, Martin J. & Olsen, Donald G. & Walmsley, Michael R.W. & Wellig, Beat, 2019. "Practical heat pump and storage integration into non-continuous processes: A hybrid approach utilizing insight based and nonlinear programming techniques," Energy, Elsevier, vol. 182(C), pages 236-253.
    6. Isabel Garcia-Herrero & Maria Margallo & Jara Laso & Raquel Onandía & Angel Irabien & Ruben Aldaco, 2017. "Measuring the Vulnerability of an Energy Intensive Sector to the EU ETS under a Life Cycle Approach: The Case of the Chlor-Alkali Industry," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bohong & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Zeng, Min & Liang, Yongtu, 2021. "Heat Exchanger Network synthesis considering prohibited and restricted matches," Energy, Elsevier, vol. 225(C).
    2. Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).
    3. Manda, B. M. Krishna & Worrell, Ernst & Patel, Martin K., 2015. "Prospective life cycle assessment of an antibacterial T-shirt and supporting business decisions to create value," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 47-57.
    4. Diana Carolina Reyes Forsberg & Jenny Bengtsson & Nadine Hollinger & Tahani Kaldéus, 2024. "Towards Sustainable Viscose-to-Viscose Production: Strategies for Recycling of Viscose Fibres," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    5. Krzysztof Bartecki, 2021. "An Approximate Transfer Function Model for a Double-Pipe Counter-Flow Heat Exchanger," Energies, MDPI, vol. 14(14), pages 1-17, July.
    6. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    7. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Sofie Marton & Elin Svensson & Simon Harvey, 2020. "Operability and Technical Implementation Issues Related to Heat Integration Measures—Interview Study at an Oil Refinery in Sweden," Energies, MDPI, vol. 13(13), pages 1-23, July.
    9. Hang, Peng & Zhao, Liwen & Liu, Guilian, 2022. "Optimal design of heat exchanger network considering the fouling throughout the operating cycle," Energy, Elsevier, vol. 241(C).
    10. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    11. Bohong Wang & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Min Zeng, 2020. "An Extended Grid Diagram for Heat Exchanger Network Retrofit Considering Heat Exchanger Types," Energies, MDPI, vol. 13(10), pages 1-14, May.
    12. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    13. Raphael Agner & Benjamin H. Y. Ong & Jan A. Stampfli & Pierre Krummenacher & Beat Wellig, 2022. "A Graphical Method for Combined Heat Pump and Indirect Heat Recovery Integration," Energies, MDPI, vol. 15(8), pages 1-21, April.
    14. Yee Van Fan & Zorka Novak Pintarič & Jiří Jaromír Klemeš, 2020. "Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability," Energies, MDPI, vol. 13(16), pages 1-25, August.
    15. Wissawa Malakan & Sarawut Thepanondh & Akira Kondo, 2022. "Modeling of Inhalation Health Risk of Volatile Organic Compounds in the Vicinity of Maptaphut Petroleum and Petrochemical Industrial Estate, Thailand," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    16. Sandin, Gustav & Peters, Greg M. & Svanström, Magdalena, 2013. "Moving down the cause-effect chain of water and land use impacts: An LCA case study of textile fibres," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 104-113.
    17. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    18. Wang, Bohong & Arsenyeva, Olga & Zeng, Min & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2022. "An advanced Grid Diagram for heat exchanger network retrofit with detailed plate heat exchanger design," Energy, Elsevier, vol. 248(C).
    19. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Liu, Zhaoli & Yang, Lu & Yang, Siyu & Qian, Yu, 2022. "An extended stage-wise superstructure for heat exchanger network synthesis with intermediate placement of multiple utilities," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6741-:d:657930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.