IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p56-67.html
   My bibliography  Save this article

A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods

Author

Listed:
  • Wang, Yufei
  • Chang, Chenglin
  • Feng, Xiao

Abstract

Heat Integration across plants is an extension of conventional Heat Integration in a single plant for further improving energy efficiency. To make good use of surplus heat, Indirect Heat Integration method using intermediate fluid loops and Direct Heat Integration method using process streams are proposed to exchange heat across plants. Up to now, the two integration methods are studied separately. This leads to an incomprehensive analysis for Heat Integration across plants, because each of the methods fit different practical situations. In this work, Combined Heat Integration method is proposed, which involves the characteristics of both direct method and indirect method. The performances for Heat Integration across plants using direct, indirect and combined methods are analyzed and compared through Composite Curves. Mathematical models are proposed to determine the optimal operation conditions for direct and indirect method. Based on a heuristic step, the optimal operation conditions for combined method can be obtained through the model for indirect method. A case study is used to illustrate the new methodology.

Suggested Citation

  • Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:56-67
    DOI: 10.1016/j.energy.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215004430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    2. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    3. Suaysompol, K. & Wood, R. M., 1993. "Estimation of the installed cost of heat exchanger networks," International Journal of Production Economics, Elsevier, vol. 29(3), pages 303-312, May.
    4. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    5. Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
    6. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    7. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Neale, James R., 2013. "Methods for improving heat exchanger area distribution and storage temperature selection in heat recovery loops," Energy, Elsevier, vol. 55(C), pages 15-22.
    8. Hackl, Roman & Andersson, Eva & Harvey, Simon, 2011. "Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)," Energy, Elsevier, vol. 36(8), pages 4609-4615.
    9. Hackl, Roman & Harvey, Simon, 2013. "Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters," Energy, Elsevier, vol. 55(C), pages 5-14.
    10. Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
    11. Hammond, G.P. & Norman, J.B., 2014. "Heat recovery opportunities in UK industry," Applied Energy, Elsevier, vol. 116(C), pages 387-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    2. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    3. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    4. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    5. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
    6. Walmsley, Timothy G. & Walmsley, Michael R.W. & Tarighaleslami, Amir H. & Atkins, Martin J. & Neale, James R., 2015. "Integration options for solar thermal with low temperature industrial heat recovery loops," Energy, Elsevier, vol. 90(P1), pages 113-121.
    7. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    8. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    9. Bungener, Stephane & Hackl, Roman & Van Eetvelde, Greet & Harvey, Simon & Marechal, Francois, 2015. "Multi-period analysis of heat integration measures in industrial clusters," Energy, Elsevier, vol. 93(P1), pages 220-234.
    10. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    11. Haragovics, Máté & Mizsey, Péter, 2014. "A novel application of exergy analysis: Lean manufacturing tool to improve energy efficiency and flexibility of hydrocarbon processing," Energy, Elsevier, vol. 77(C), pages 382-390.
    12. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2019. "A pinch-based automated targeting technique for heating medium system," Energy, Elsevier, vol. 166(C), pages 193-212.
    13. Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
    14. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2012. "Heat integration of regenerative Rankine cycle and process surplus heat through graphical targeting and mathematical modeling technique," Energy, Elsevier, vol. 45(1), pages 556-569.
    15. Chen, Xiaohui & Zheng, Danxing & Chen, Juan, 2014. "An approach to obtain Heat Integration scheme with higher viability for complex system," Energy, Elsevier, vol. 78(C), pages 720-731.
    16. Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
    17. Boldyryev, Stanislav & Varbanov, Petar Sabev, 2015. "Low potential heat utilization of bromine plant via integration on process and Total Site levels," Energy, Elsevier, vol. 90(P1), pages 47-55.
    18. Hackl, Roman & Harvey, Simon, 2015. "From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters," Energy, Elsevier, vol. 90(P1), pages 163-172.
    19. Stijepovic, Vladimir Z. & Linke, Patrick & Stijepovic, Mirko Z. & Kijevčanin, Mirjana Lj. & Šerbanović, Slobodan, 2012. "Targeting and design of industrial zone waste heat reuse for combined heat and power generation," Energy, Elsevier, vol. 47(1), pages 302-313.
    20. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.