On the use of risk-based Shapley values for cost sharing in interplant heat integration programs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.11.097
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Michel Grabisch & Lijue Xie, 2007.
"A new approach to the core and Weber set of multichoice games,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 491-512, December.
- Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00267933, HAL.
- Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Post-Print halshs-00267933, HAL.
- Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
- Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
- Frisk, M. & Göthe-Lundgren, M. & Jörnsten, K. & Rönnqvist, M., 2010.
"Cost allocation in collaborative forest transportation,"
European Journal of Operational Research, Elsevier, vol. 205(2), pages 448-458, September.
- Frisk, Mikael & Göthe-Lundgren, Maud & Jörnsten, Kurt & Rönnqvist, Mikael, 2006. "Cost allocation in collaborative forest transportation," Discussion Papers 2006/15, Norwegian School of Economics, Department of Business and Management Science.
- Hackl, Roman & Harvey, Simon, 2015. "From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters," Energy, Elsevier, vol. 90(P1), pages 163-172.
- Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
- Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
- Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
- Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
- Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
- Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
- Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
- Lo Prete, Chiara & Hobbs, Benjamin F., 2016. "A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets," Applied Energy, Elsevier, vol. 169(C), pages 524-541.
- Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
- Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
- Liu, Yangyang & Shen, Zhongqi & Tang, Xiaowei & Lian, Hongbo & Li, Jiarui & Gong, Jinxia, 2019. "Worst-case conditional value-at-risk based bidding strategy for wind-hydro hybrid systems under probability distribution uncertainties," Applied Energy, Elsevier, vol. 256(C).
- Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
- Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
- Tian, Yitong & Li, Shaojun, 2022. "Multi-plant direct heat integration considering coalition stability under unplanned shutdown risks," Energy, Elsevier, vol. 243(C).
- Pan, Huangji & Jin, Yuhui & Li, Shaojun, 2018. "Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm," Energy, Elsevier, vol. 163(C), pages 811-821.
- Eryganov, Ivan & Šomplák, Radovan & Nevrlý, Vlastimír & Osicka, Ondrej & Procházka, Vít, 2022. "Cost-effective municipal unions formation within intermediate regions under prioritized waste energy recovery," Energy, Elsevier, vol. 256(C).
- Zeng, Lijun & Du, Wenjing & Zhang, Wencheng & Zhao, Laijun & Wang, Zhaohua, 2023. "An inter-provincial cooperation model under Renewable Portfolio Standard policy," Energy, Elsevier, vol. 269(C).
- Wu, Wencong & Du, Yuji & Qian, Huijin & Fan, Haibin & Jiang, Zhu & Huang, Shifang & Zhang, Xiaosong, 2024. "Industrial Park low-carbon energy system planning framework: Heat pump based energy conjugation between industry and buildings," Applied Energy, Elsevier, vol. 369(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
- Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
- Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
- Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
- Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
- Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
- Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
- Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
- Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
- Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
- Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
- Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
- Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
- Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
- Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Philipp, Matthias & Peesel, Ron-Hendrik, 2018. "Process and utility systems integration and optimisation for ultra-low energy milk powder production," Energy, Elsevier, vol. 146(C), pages 67-81.
- Fuentes González, Fabián & van der Weijde, Adriaan Hendrik & Sauma, Enzo, 2020. "The promotion of community energy projects in Chile and Scotland: An economic approach using biform games," Energy Economics, Elsevier, vol. 86(C).
- Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
- Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
- Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
- Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
More about this item
Keywords
Total-site heat integration; Heat exchanger network; Cooperative game; Shapley value; Shutdown risk;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:904-920. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.