IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp950-960.html
   My bibliography  Save this article

Multi-objective optimization of multi-period interplant heat integration using steam system

Author

Listed:
  • Ma, Jiaze
  • Chang, Chenglin
  • Wang, Yufei
  • Feng, Xiao

Abstract

This paper proposed a mathematical model for formulating interplant heat exchanger network (HEN) operated under multi-periods. Each individual plant is linked through a centralized utility system and steam is selected as the heat transferring medium. Previous studies on optimizing interplant HENs mainly focus on minimizing the cost of system. In this study, the interplant HEN is optimized with two objectives: minimizing the cost and the environmental impact (EI). The maximum representative approach for the area of exchangers is used to formulate a flexible network that can be operated under the worst condition. A case study is employed to show the effectiveness of the proposed model. Pareto curves are plotted to exhibit the trade-off between the two different objectives. The results show that the utility system occupies a major part of the overall environmental impact, and the construction of exchangers does not exert significant impact on environments. Intensifying the heat integration by increasing heat exchanger areas is an effective approach for reducing environmental impacts of HENs, although it is not cost saving.

Suggested Citation

  • Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:950-960
    DOI: 10.1016/j.energy.2018.06.217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    2. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    3. Sun, Li & Doyle, Steve & Smith, Robin, 2015. "Heat recovery and power targeting in utility systems," Energy, Elsevier, vol. 84(C), pages 196-206.
    4. Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
    5. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
    6. Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2016. "Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration," Applied Energy, Elsevier, vol. 184(C), pages 1350-1363.
    7. Vaskan, Pavel & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2012. "Multi-objective design of heat-exchanger networks considering several life cycle impacts using a rigorous MILP-based dimensionality reduction technique," Applied Energy, Elsevier, vol. 98(C), pages 149-161.
    8. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    9. Morandin, Matteo & Hackl, Roman & Harvey, Simon, 2014. "Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster," Energy, Elsevier, vol. 65(C), pages 209-220.
    10. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    11. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    12. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cantu Rodriguez, Roman & Palacios-Garcia, Emilio J. & Deconinck, Geert, 2024. "Redesign for flexibility through electrification: Multi-objective optimization of the operation of a multi-energy industrial steam network," Applied Energy, Elsevier, vol. 362(C).
    2. Yao Sheng & Linlin Liu & Yu Zhuang & Lei Zhang & Jian Du, 2020. "Simultaneous Synthesis of Heat Exchanger Networks Considering Steam Supply and Various Steam Heater Locations," Energies, MDPI, vol. 13(6), pages 1-17, March.
    3. Pintarič, Zorka Novak & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2019. "Multi-objective multi-period synthesis of energy efficient processes under variable environmental taxes," Energy, Elsevier, vol. 189(C).
    4. Zhang, Zhaoyan & Jiang, Ping & Liu, Zhibin & Fu, Lei & Wang, Peiguang, 2023. "Capacity optimal configuration and collaborative planning of multi-region integrated energy system," Energy, Elsevier, vol. 278(PB).
    5. López-Flores, Francisco Javier & Hernández-Pérez, Luis Germán & Lira-Barragán, Luis Fernando & Rubio-Castro, Eusiel & Ponce-Ortega, José M., 2022. "Optimal Profit Distribution in Interplant Waste Heat Integration through a Hybrid Approach," Energy, Elsevier, vol. 253(C).
    6. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    7. Zhuang, Wennan & Zhou, Suyang & Chen, Jinyi & Gu, Wei, 2024. "Operation optimization of electricity-steam coupled industrial energy system considering steam accumulator," Energy, Elsevier, vol. 289(C).
    8. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Ji, Feng & Dong, Yachao & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2022. "Industrial park heat integration considering centralized and distributed waste heat recovery cycle systems," Applied Energy, Elsevier, vol. 318(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
    2. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    3. Pan, Huangji & Jin, Yuhui & Li, Shaojun, 2018. "Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm," Energy, Elsevier, vol. 163(C), pages 811-821.
    4. Tian, Yitong & Li, Shaojun, 2022. "Multi-plant direct heat integration considering coalition stability under unplanned shutdown risks," Energy, Elsevier, vol. 243(C).
    5. López-Flores, Francisco Javier & Hernández-Pérez, Luis Germán & Lira-Barragán, Luis Fernando & Rubio-Castro, Eusiel & Ponce-Ortega, José M., 2022. "Optimal Profit Distribution in Interplant Waste Heat Integration through a Hybrid Approach," Energy, Elsevier, vol. 253(C).
    6. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    7. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    8. Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
    9. Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
    10. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    11. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    12. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Neale, James R., 2018. "Utility Exchanger Network synthesis for Total Site Heat Integration," Energy, Elsevier, vol. 153(C), pages 1000-1015.
    13. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
    14. Ainur Munirah Hafizan & Jiří Jaromír Klemeš & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Mohd Kamaruddin Abd Hamid, 2019. "Temperature Disturbance Management in a Heat Exchanger Network for Maximum Energy Recovery Considering Economic Analysis," Energies, MDPI, vol. 12(4), pages 1-30, February.
    15. Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
    16. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    17. Yao Sheng & Linlin Liu & Yu Zhuang & Lei Zhang & Jian Du, 2020. "Simultaneous Synthesis of Heat Exchanger Networks Considering Steam Supply and Various Steam Heater Locations," Energies, MDPI, vol. 13(6), pages 1-17, March.
    18. Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
    19. Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
    20. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:950-960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.