IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4727-d296777.html
   My bibliography  Save this article

Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay

Author

Listed:
  • Yuqiang Tian

    (Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
    Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China)

  • Bin Wang

    (Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
    Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China)

  • Diyi Chen

    (Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
    Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China)

  • Shaokun Wang

    (Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

  • Peng Chen

    (Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

  • Ying Yang

    (Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)

Abstract

A nonlinear predictive control method for a fractional-order hydraulic turbine governing system (HTGS) with a time delay is studied in this paper. First, a fractional-order model of a time-delay hydraulic turbine governing system is presented. Second, the fractional-order hydraulic servo subsystem is transformed into a standard controlled autoregressive moving average (CARMA) model according to the Grünwald-Letnikov (G-L) definition of fractional calculus. Third, based on the delayed Takagi-Sugeno fuzzy model, the fuzzy prediction model of the integer-order part of the HTGS is given. Then, by introducing a fourth-order Runge-Kutta algorithm, the fuzzy prediction model can be easily transformed into the CARMA model. Furthermore, a nonlinear predictive controller is proposed to stabilize the time-delay HTGS. Finally, the experiment results are consistent with the theoretical analysis.

Suggested Citation

  • Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4727-:d:296777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Chaoshun & Mao, Yifeng & Yang, Jiandong & Wang, Zanbin & Xu, Yanhe, 2017. "A nonlinear generalized predictive control for pumped storage unit," Renewable Energy, Elsevier, vol. 114(PB), pages 945-959.
    2. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    3. Bicheng Guo & Jiang Guo, 2019. "Feedback Linearization and Reaching Law Based Sliding Mode Control Design for Nonlinear Hydraulic Turbine Governing System," Energies, MDPI, vol. 12(12), pages 1-19, June.
    4. Agarwal, P. & El-Sayed, A.A., 2018. "Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 40-49.
    5. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    6. Huang, Sunhua & Zhou, Bin & Bu, Siqi & Li, Canbing & Zhang, Cong & Wang, Huaizhi & Wang, Tao, 2019. "Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system," Renewable Energy, Elsevier, vol. 139(C), pages 447-458.
    7. Donglin Yan & Weiyu Wang & Qijuan Chen, 2018. "Nonlinear Modeling and Dynamic Analyses of the Hydro–Turbine Governing System in the Load Shedding Transient Regime," Energies, MDPI, vol. 11(5), pages 1-17, May.
    8. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
    9. Wencheng Guo, 2019. "A Review of the Hydraulic Transient and Dynamic Behavior of Hydropower Plants with Sloping Ceiling Tailrace Tunnels," Energies, MDPI, vol. 12(17), pages 1-28, August.
    10. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    11. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    12. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    13. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.
    14. Weijia Yang & Per Norrlund & Linn Saarinen & Adam Witt & Brennan Smith & Jiandong Yang & Urban Lundin, 2018. "Burden on hydropower units for short-term balancing of renewable power systems," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    15. Yang, Weijia & Norrlund, Per & Saarinen, Linn & Yang, Jiandong & Guo, Wencheng & Zeng, Wei, 2016. "Wear and tear on hydro power turbines – Influence from primary frequency control," Renewable Energy, Elsevier, vol. 87(P1), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zhao & Xianku Zhang & Yilin Chen & Pengrui Wang, 2021. "Using Sine Function-Based Nonlinear Feedback to Control Water Tank Level," Energies, MDPI, vol. 14(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    2. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    3. Lisheng Li & Jing Qian & Yidong Zou & Danning Tian & Yun Zeng & Fei Cao & Xiang Li, 2022. "Optimized Takagi–Sugeno Fuzzy Mixed H 2 / H ∞ Robust Controller Design Based on CPSOGSA Optimization Algorithm for Hydraulic Turbine Governing System," Energies, MDPI, vol. 15(13), pages 1-31, June.
    4. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    5. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    7. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    8. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    9. Zhou, Jianxu & Mao, Yutong & Shen, Aili & Zhang, Jian, 2023. "Modeling and stability investigation on the governor-turbine-hydraulic system with a ceiling-sloping tail tunnel," Renewable Energy, Elsevier, vol. 204(C), pages 812-822.
    10. Huang, Sunhua & Zhou, Bin & Bu, Siqi & Li, Canbing & Zhang, Cong & Wang, Huaizhi & Wang, Tao, 2019. "Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system," Renewable Energy, Elsevier, vol. 139(C), pages 447-458.
    11. Tianyu Yang & Bin Wang & Peng Chen, 2020. "Design of a Finite-Time Terminal Sliding Mode Controller for a Nonlinear Hydro-Turbine Governing System," Energies, MDPI, vol. 13(3), pages 1-14, February.
    12. Tian, Yuqiang & Wang, Bin & Chen, Peng & Yang, Ying, 2021. "Finite-time Takagi–Sugeno fuzzy controller design for hydraulic turbine governing systems with mechanical time delays," Renewable Energy, Elsevier, vol. 173(C), pages 614-624.
    13. Yu, Xiaodong & Yang, Xiuwei & Zhang, Jian, 2019. "Stability analysis of hydro-turbine governing system including surge tanks under interconnected operation during small load disturbance," Renewable Energy, Elsevier, vol. 133(C), pages 1426-1435.
    14. Guo, Wencheng & Zhu, Daoyi, 2020. "Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    16. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    17. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    18. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    19. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    20. Valentín, David & Presas, Alexandre & Egusquiza, Mònica & Drommi, Jean-Louis & Valero, Carme, 2022. "Benefits of battery hybridization in hydraulic turbines. Wear and tear evaluation in a Kaplan prototype," Renewable Energy, Elsevier, vol. 199(C), pages 35-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4727-:d:296777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.