IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp1217-1230.html
   My bibliography  Save this article

Mathematical model and parametric uncertainty analysis of a hydraulic generating system

Author

Listed:
  • Xu, Beibei
  • Chen, Diyi
  • Patelli, Edoardo
  • Shen, Haijun
  • Park, Jae-Hyun

Abstract

Conversion efficiency and unit vibration are two important indexes in evaluating the stability of hydraulic generating systems (HGSs). Most of related studies have been carried out in the deterministic theory framework. As running times of HGS increased, understanding uncertainties and limitations of model parameters are important for accurate modeling and stability evaluation. In this study, first, we establish an integrated model of a HGS by proposing unbalanced hydraulic forces based on the Kutta-Zhoukowski assumption. Second, global sensitivity and parametric interactions for conversion efficiency and unit vibration are investigated based on this model. Finally, the novel unified model is verified with two conventional models. This integrated and accurate mathematical model is a major advance in the diagnosis and prediction of failures in hydropower operation.

Suggested Citation

  • Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:1217-1230
    DOI: 10.1016/j.renene.2018.09.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riasi, Alireza & Tazraei, Pedram, 2017. "Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves," Renewable Energy, Elsevier, vol. 107(C), pages 138-146.
    2. Guo, Wencheng & Yang, Jiandong & Teng, Yi, 2017. "Surge wave characteristics for hydropower station with upstream series double surge tanks in load rejection transient," Renewable Energy, Elsevier, vol. 108(C), pages 488-501.
    3. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
    4. Xu, Yufu & Peng, Yubin & Zheng, Xiaojing & Dearn, Karl D. & Xu, Hongming & Hu, Xianguo, 2015. "Synthesis and tribological studies of nanoparticle additives for pyrolysis bio-oil formulated as a diesel fuel," Energy, Elsevier, vol. 83(C), pages 80-88.
    5. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    6. Xu, Beibei & Chen, Diyi & Zhang, Hao & Wang, Feifei, 2015. "Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 50-61.
    7. Yang, Weijia & Norrlund, Per & Saarinen, Linn & Yang, Jiandong & Guo, Wencheng & Zeng, Wei, 2016. "Wear and tear on hydro power turbines – Influence from primary frequency control," Renewable Energy, Elsevier, vol. 87(P1), pages 88-95.
    8. Rezghi, A. & Riasi, A., 2016. "Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway," Renewable Energy, Elsevier, vol. 86(C), pages 611-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Sunhua & Xiong, Linyun & Wang, Jie & Li, Penghan & Wang, Ziqiang & Ma, Meilng, 2020. "Fixed-time synergetic controller for stabilization of hydraulic turbine regulating system," Renewable Energy, Elsevier, vol. 157(C), pages 1233-1242.
    2. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    3. Guo, Wencheng & Zhu, Daoyi, 2020. "Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Xu, Beibei & Chen, Diyi & Venkateshkumar, M. & Xiao, Yu & Yue, Yan & Xing, Yanqiu & Li, Peiquan, 2019. "Modeling a pumped storage hydropower integrated to a hybrid power system with solar-wind power and its stability analysis," Applied Energy, Elsevier, vol. 248(C), pages 446-462.
    6. Yan, Donglin & Zheng, Yang & Liu, Wanying & Chen, Tianya & Chen, Qijuan, 2022. "Interval uncertainty analysis of vibration response of hydroelectric generating unit based on Chebyshev polynomial," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    8. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    9. Barbosa de Santis, Rodrigo & Silveira Gontijo, Tiago & Azevedo Costa, Marcelo, 2021. "Condition-based maintenance in hydroelectric plants: A systematic literature review," MPRA Paper 115912, University Library of Munich, Germany.
    10. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    3. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    4. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    5. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    6. Yu, Xiaodong & Yang, Xiuwei & Zhang, Jian, 2019. "Stability analysis of hydro-turbine governing system including surge tanks under interconnected operation during small load disturbance," Renewable Energy, Elsevier, vol. 133(C), pages 1426-1435.
    7. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    8. Valentín, David & Presas, Alexandre & Egusquiza, Mònica & Drommi, Jean-Louis & Valero, Carme, 2022. "Benefits of battery hybridization in hydraulic turbines. Wear and tear evaluation in a Kaplan prototype," Renewable Energy, Elsevier, vol. 199(C), pages 35-43.
    9. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    10. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    11. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    12. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    13. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    14. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    15. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    16. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    17. Wuyi Wan & Boran Zhang & Xiaoyi Chen & Jijian Lian, 2019. "Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System," Energies, MDPI, vol. 12(13), pages 1-19, July.
    18. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    19. Peng, Zhiyuan & Guo, Wencheng, 2019. "Saturation characteristics for stability of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 131(C), pages 318-332.
    20. Tang, Renbo & Yang, Jiandong & Yang, Weijia & Zou, Jin & Lai, Xu, 2019. "Dynamic regulation characteristics of pumped-storage plants with two generating units sharing common conduits and busbar for balancing variable renewable energy," Renewable Energy, Elsevier, vol. 135(C), pages 1064-1077.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:1217-1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.