IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05060-4.html
   My bibliography  Save this article

Burden on hydropower units for short-term balancing of renewable power systems

Author

Listed:
  • Weijia Yang

    (Wuhan University
    Uppsala University
    Environmental Sciences Division
    Wuhan University)

  • Per Norrlund

    (Uppsala University
    Vattenfall R&D)

  • Linn Saarinen

    (Uppsala University
    Vattenfall R&D)

  • Adam Witt

    (Environmental Sciences Division)

  • Brennan Smith

    (Environmental Sciences Division)

  • Jiandong Yang

    (Wuhan University)

  • Urban Lundin

    (Uppsala University)

Abstract

There is a general need to change hydropower operational regimes to balance the growing contribution of variable renewable energy sources in power systems. Quantifying the burden on generation equipment is increasingly uncertain and difficult. Here, we propose a framework combining technical and economic indicators to analyze primary frequency control (PFC) on a timescale of seconds. We develop a model integrating hydraulic, mechanical, and electrical subsystems to characterize efficiency loss, wear and fatigue, regulation mileage, and frequency quality. We evaluate burden relief strategies under three idealized remuneration schemes for PFC, inspired by those used in Sweden, the USA, and China, respectively. We show how burden and compensation vary under future scenarios of renewable power systems. Our framework can be used by producers to develop favorable operation strategies that reduce burden and increase economic value, and by transmission system operators to provide insights on the relation between incentive structures and regulating performance.

Suggested Citation

  • Weijia Yang & Per Norrlund & Linn Saarinen & Adam Witt & Brennan Smith & Jiandong Yang & Urban Lundin, 2018. "Burden on hydropower units for short-term balancing of renewable power systems," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05060-4
    DOI: 10.1038/s41467-018-05060-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05060-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05060-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lap, Tjerk & Benders, René & van der Hilst, Floor & Faaij, André, 2020. "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?," Energy, Elsevier, vol. 195(C).
    2. Li, Xiao & Liu, Pan & Wang, Yibo & Yang, Zhikai & Gong, Yu & An, Rihui & Huang, Kangdi & Wen, Yan, 2022. "Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China's Qing River cascade-reservoir system," Renewable Energy, Elsevier, vol. 182(C), pages 1028-1038.
    3. Ma, Binfeng & Wang, Xiaofang, 2024. "Unveiling asymmetric dynamics: Exploring the impact of oil price on economic growth and current account deficit: Evidence from G-7 countries," Resources Policy, Elsevier, vol. 89(C).
    4. Hase, Bastian & Seidel, Christian, 2021. "Balancing services by run-of-river-hydropower at low reservoir amplitudes: Potentials, revenues and emission impacts," Applied Energy, Elsevier, vol. 294(C).
    5. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    6. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    7. Mao, Xiuli & Pavesi, Giorgio & Chen, Diyi & Xu, Hengshan & Mao, Gaojun, 2019. "Flow induced noise characterization of pump turbine in continuous and intermittent load rejection processes," Renewable Energy, Elsevier, vol. 139(C), pages 1029-1039.
    8. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    9. Młyński, Dariusz & Książek, Leszek & Bogdał, Andrzej, 2024. "Meteorological drought effect for Central Europe's hydropower potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    11. He Wang & Zhijie Ma, 2021. "Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation," Energies, MDPI, vol. 14(24), pages 1-21, December.
    12. Xinran Guo & Huaiyu Cheng & Hao Wang & Yuanchu Cheng & Mian Sun, 2019. "Analysis of the Power Fluctuations Caused by the Unstable Flow in the Trifurcation of Multi-Turbine Diversion Systems with Common Penstock in Hydropower Units," Energies, MDPI, vol. 12(15), pages 1-17, July.
    13. Xianxun Wang & Lihua Chen & Qijuan Chen & Yadong Mei & Hao Wang, 2018. "Model and Analysis of Integrating Wind and PV Power in Remote and Core Areas with Small Hydropower and Pumped Hydropower Storage," Energies, MDPI, vol. 11(12), pages 1-24, December.
    14. Hao An & Jiandong Yang & Weijia Yang & Yuanchu Cheng & Yumin Peng, 2019. "An Improved Frequency Dead Zone with Feed-Forward Control for Hydropower Units: Performance Evaluation of Primary Frequency Control," Energies, MDPI, vol. 12(8), pages 1-25, April.
    15. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.
    16. Jose M. Gonzalez & James E. Tomlinson & Eduardo A. Martínez Ceseña & Mohammed Basheer & Emmanuel Obuobie & Philip T. Padi & Salifu Addo & Rasheed Baisie & Mikiyas Etichia & Anthony Hurford & Andrea Bo, 2023. "Designing diversified renewable energy systems to balance multisector performance," Nature Sustainability, Nature, vol. 6(4), pages 415-427, April.
    17. Lei, Liuwei & Li, Feng & Xu, Beibei & Egusquiza, Mònica & Luo, Xingqi & Zhang, Junzhi & Egusquiza, Eduard & Chen, Diyi & Jiang, Wei & Patelli, Edoardo, 2022. "Time-frequency domain characteristics analysis of a hydro-turbine governor system considering vortex rope excitation," Renewable Energy, Elsevier, vol. 183(C), pages 172-187.
    18. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Bin Xu & Xin Huang & Ping-an Zhong & Yenan Wu, 2020. "Two-Phase Risk Hedging Rules for Informing Conservation of Flood Resources in Reservoir Operation Considering Inflow Forecast Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2731-2752, July.
    20. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    21. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    22. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    23. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Wang, Haidong & Jin, Xiaoyu, 2023. "Short-term operation of cascade hydropower system sharing flexibility via high voltage direct current lines for multiple grids peak shaving," Renewable Energy, Elsevier, vol. 213(C), pages 11-29.
    24. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    25. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05060-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.