IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015718.html
   My bibliography  Save this article

Intelligent robust control for nonlinear complex hydro-turbine regulation system based on a novel state space equation and dynamic feedback linearization

Author

Listed:
  • Chen, Jinbao
  • Zeng, Quan
  • Zou, Yidong
  • Li, Shaojie
  • Zheng, Yang
  • Liu, Dong
  • Xiao, Zhihuai

Abstract

To achieve optimal control under all operating conditions for hydropower units, an intelligent robust controller (NSFLIRC) is proposed based on a novel state space equation and state-dynamic-measurement feedback linearization. Firstly, a nonlinear hydro-turbine regulation system (HTRS) model is constructed and a novel high-order state space equation model of HTRS is derived considering system tracking deviation. Then, the robust control for HTRS is achieved by combining the novel high-order state space equation and H∞ control. Furthermore, the slime mold algorithm (SMA) is improved by incorporating hybrid chaotic mapping functions, Levy flight, and a nonlinear weight coefficient. The intelligent optimization of H∞ controller parameters is realized using the improved SMA (ISMA). Finally, a nonlinear HTRS simulation platform is constructed to verify the performance of the proposed NSFLIRC. The simulation results show that when the overshoot is within a reasonable range, using NSFLIRC can respectively reduce the average values of adjusting time, rising time, overshoot, and power inversion by 46.6 %, 29.06 %, and 52.56 % comparing to the traditional PID controller under six typical operating conditions; also, the NSFLIRC has low sensitivity to changes in system parameters and most operating conditions, and has strong robustness under conventional load changes and extreme three-phase short circuit conditions.

Suggested Citation

  • Chen, Jinbao & Zeng, Quan & Zou, Yidong & Li, Shaojie & Zheng, Yang & Liu, Dong & Xiao, Zhihuai, 2024. "Intelligent robust control for nonlinear complex hydro-turbine regulation system based on a novel state space equation and dynamic feedback linearization," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015718
    DOI: 10.1016/j.energy.2024.131798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    2. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    3. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    4. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    5. Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.
    6. Fu, Yangyang & O'Neill, Zheng & Yang, Zhiyao & Adetola, Veronica & Wen, Jin & Ren, Lingyu & Wagner, Tim & Zhu, Qi & Wu, Terresa, 2021. "Modeling and evaluation of cyber-attacks on grid-interactive efficient buildings," Applied Energy, Elsevier, vol. 303(C).
    7. Wenlong Fu & QiPeng Lu, 2020. "Multiobjective Optimal Control of FOPID Controller for Hydraulic Turbine Governing Systems Based on Reinforced Multiobjective Harris Hawks Optimization Coupling with Hybrid Strategies," Complexity, Hindawi, vol. 2020, pages 1-17, July.
    8. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    9. Xu, Da & Yuan, Zhe-Li & Bai, Ziyi & Wu, Zhibin & Chen, Shuangyin & Zhou, Ming, 2022. "Optimal operation of geothermal-solar-wind renewables for community multi-energy supplies," Energy, Elsevier, vol. 249(C).
    10. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    11. Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).
    12. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    13. Örnek, Bülent Nafi & Aydemir, Salih Berkan & Düzenli, Timur & Özak, Bilal, 2022. "A novel version of slime mould algorithm for global optimization and real world engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 253-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    2. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    3. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    4. Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).
    5. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    6. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    7. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang, 2022. "Influence of water diversion system topologies and operation scenarios on the damping characteristics of hydropower units under ultra-low frequency oscillations," Energy, Elsevier, vol. 239(PE).
    8. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    9. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    10. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    11. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    12. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    13. Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
    14. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    15. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    16. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    17. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    18. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Qi Yang & Jing Qian & Jia Li & Yidong Zou & Danning Tian & Yun Zeng & Yan Long & Ganyuan Zhang, 2023. "A New Integral Sliding Mode Control for Hydraulic Turbine Governing Systems Based on Nonlinear Disturbance Observer Compensation," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    20. Shuangqing Yan & Yang Zheng & Jinbao Chen & Yousong Shi, 2022. "Hydraulic Oscillation Analysis of the Hydropower Station with an Equivalent Circuit-Based Hydraulic Impedance Scheme," Sustainability, MDPI, vol. 14(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.