IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp812-822.html
   My bibliography  Save this article

Modeling and stability investigation on the governor-turbine-hydraulic system with a ceiling-sloping tail tunnel

Author

Listed:
  • Zhou, Jianxu
  • Mao, Yutong
  • Shen, Aili
  • Zhang, Jian

Abstract

For a hydropower system with a relatively short tail tunnel and wide variation of tail water level, the ceiling-sloping tail tunnel (CSTT) is often recommended. Considering various flow patterns and traveling free-surface-pressurized interface in the CSTT, stability modeling and analysis of the governor-turbine-hydraulic system shows more challenging. Based on state equations analysis, an improved nonlinear model considering transition part, and a new linear model for downstream free-surface flow are derived. Further comparative analysis indicates that, by introducing these models, water flow characteristics in transition part have positive effect on operation stability with an around 4.0% increase of attenuation rate, while that of downstream free-surface flow has a negative effect with a 21.8% decrease rate on the absolute value of negative attenuation factor. For stability optimization of the CSTT, to properly increase its bottom width is preferable, herein with a 6.2% increase of attenuation rate for a 2.0 m increase of bottom width, while a reasonable ceiling slope should be optimized considering the counteraction effect of upstream pressurized flow and downstream free-surface flow. The new developed models and further discussion for the hydropower systems with a CSTT will greatly improve system's stability evaluation and advance the development of renewable energy.

Suggested Citation

  • Zhou, Jianxu & Mao, Yutong & Shen, Aili & Zhang, Jian, 2023. "Modeling and stability investigation on the governor-turbine-hydraulic system with a ceiling-sloping tail tunnel," Renewable Energy, Elsevier, vol. 204(C), pages 812-822.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:812-822
    DOI: 10.1016/j.renene.2023.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123000629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    2. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    3. Guo, Wencheng & Yang, Jiandong, 2017. "Hopf bifurcation control of hydro-turbine governing system with sloping ceiling tailrace tunnel using nonlinear state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 426-434.
    4. Wencheng Guo, 2018. "Nonlinear Disturbance Decoupling Control for Hydro-Turbine Governing System with Sloping Ceiling Tailrace Tunnel Based on Differential Geometry Theory," Energies, MDPI, vol. 11(12), pages 1-21, November.
    5. Wencheng Guo, 2019. "A Review of the Hydraulic Transient and Dynamic Behavior of Hydropower Plants with Sloping Ceiling Tailrace Tunnels," Energies, MDPI, vol. 12(17), pages 1-28, August.
    6. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    7. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    8. Bao, Haiyan & Yang, Jiandong & Zhao, Guilian & Zeng, Wei & Liu, Yanna & Yang, Weijia, 2018. "Condition of setting surge tanks in hydropower plants – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2059-2070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxu Zhou & Chaoqun Li & Yutong Mao, 2023. "Discussion on Operational Stability of Governor Turbine Hydraulic System Considering Effect of Power System," Energies, MDPI, vol. 16(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Wencheng & Zhu, Daoyi, 2020. "Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Wencheng Guo, 2019. "A Review of the Hydraulic Transient and Dynamic Behavior of Hydropower Plants with Sloping Ceiling Tailrace Tunnels," Energies, MDPI, vol. 12(17), pages 1-28, August.
    4. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    5. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    6. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    7. Qi Yang & Jing Qian & Jia Li & Yidong Zou & Danning Tian & Yun Zeng & Yan Long & Ganyuan Zhang, 2023. "A New Integral Sliding Mode Control for Hydraulic Turbine Governing Systems Based on Nonlinear Disturbance Observer Compensation," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    8. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    9. Xu, Xinyu & Guo, Wencheng, 2020. "Stability of speed regulating system of hydropower station with surge tank considering nonlinear turbine characteristics," Renewable Energy, Elsevier, vol. 162(C), pages 960-972.
    10. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    11. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    12. Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
    13. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    14. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    15. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    16. Okulov, V.L. & Naumov, I.V. & Kabardin, I.K. & Litvinov, I.V. & Markovich, D.M. & Mikkelsen, R.F. & Sørensen, J.N. & Alekseenko, S.V. & Wood, D.H., 2021. "Experiments on line arrays of horizontal-axis hydroturbines," Renewable Energy, Elsevier, vol. 163(C), pages 15-21.
    17. Zhang, Jian & Qiu, Weixin & Wang, Qinyi & Yao, Tianyu & Hu, Chao & Liu, Yi, 2024. "Extreme water level of surge chamber in hydropower plant under combined operating conditions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    19. Bao, Haiyan & Yang, Jiandong & Zhao, Guilian & Zeng, Wei & Liu, Yanna & Yang, Weijia, 2018. "Condition of setting surge tanks in hydropower plants – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2059-2070.
    20. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:812-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.