IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp35-43.html
   My bibliography  Save this article

Benefits of battery hybridization in hydraulic turbines. Wear and tear evaluation in a Kaplan prototype

Author

Listed:
  • Valentín, David
  • Presas, Alexandre
  • Egusquiza, Mònica
  • Drommi, Jean-Louis
  • Valero, Carme

Abstract

Kaplan turbines are nowadays used to provide Frequency Containment Reserve (FCR) to the grid due to their fast capacity to regulate their power maintaining high efficiency. However, this continuous power regulation increases the wear and tear of the regulation system considerably. To reduce the amount of movements in the regulation servomotors, and thus their wear and tear, a new technology is being investigated within the frame of the European project XFLEX Hydro. This new technology is based on hybridizing the hydro unit with a small size battery in parallel, this one being in charge of compensating the small frequency fluctuations in the grid by providing or absorbing power. In this paper, the benefits of the implementation of this new technology are evaluated. A Kaplan turbine prototype located in Vogelgrun, France, has been hybridized and different parameters have been monitored while the unit was working in hybrid mode and in normal standalone hydro mode. Wear and tear of the regulation system have been compared for both hybrid and standalone hydro modes. A reduction of about 25% in servomotors mileage and of 50% in fatigue damage have been obtained by hybridizing the unit.

Suggested Citation

  • Valentín, David & Presas, Alexandre & Egusquiza, Mònica & Drommi, Jean-Louis & Valero, Carme, 2022. "Benefits of battery hybridization in hydraulic turbines. Wear and tear evaluation in a Kaplan prototype," Renewable Energy, Elsevier, vol. 199(C), pages 35-43.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:35-43
    DOI: 10.1016/j.renene.2022.08.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Wencheng & Yang, Jiandong, 2018. "Modeling and dynamic response control for primary frequency regulation of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 121(C), pages 173-187.
    2. Yang, Weijia & Norrlund, Per & Saarinen, Linn & Yang, Jiandong & Guo, Wencheng & Zeng, Wei, 2016. "Wear and tear on hydro power turbines – Influence from primary frequency control," Renewable Energy, Elsevier, vol. 87(P1), pages 88-95.
    3. Boyle, James & Littler, Timothy & Foley, Aoife, 2020. "Battery energy storage system state-of-charge management to ensure availability of frequency regulating services from wind farms," Renewable Energy, Elsevier, vol. 160(C), pages 1119-1135.
    4. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2021. "Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment," Renewable Energy, Elsevier, vol. 172(C), pages 465-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    2. Huang, Sunhua & Zhou, Bin & Bu, Siqi & Li, Canbing & Zhang, Cong & Wang, Huaizhi & Wang, Tao, 2019. "Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system," Renewable Energy, Elsevier, vol. 139(C), pages 447-458.
    3. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    4. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    5. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    6. Grover, Himanshu & Verma, Ashu & Bhatti, T.S., 2022. "DOBC-based frequency & voltage regulation strategy for PV-diesel hybrid microgrid during islanding conditions," Renewable Energy, Elsevier, vol. 196(C), pages 883-900.
    7. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.
    8. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    9. Jiang, Sufan & Wu, Chuanshen & Gao, Shan & Pan, Guangsheng & Liu, Yu & Zhao, Xin & Wang, Sicheng, 2022. "Robust frequency risk-constrained unit commitment model for AC-DC system considering wind uncertainty," Renewable Energy, Elsevier, vol. 195(C), pages 395-406.
    10. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    11. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    12. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    14. Jie Li & Chongyang Han & Weibin Wu & Ting Tang & Xiao Ran & Zefeng Zheng & Shunli Sun, 2022. "Load Spectrum Compilation Method of Hybrid Electric Vehicle Reducers Based on Multi-Criteria Decision Making," Energies, MDPI, vol. 15(9), pages 1-18, April.
    15. Sheng Chen & Gaohui Li & Delou Wang & Xingtao Wang & Jian Zhang & Xiaodong Yu, 2019. "Impact of Tail Water Fluctuation on Turbine Start-Up and Optimized Regulation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    16. Mimica, Marko & Dominković, Dominik Franjo & Capuder, Tomislav & Krajačić, Goran, 2021. "On the value and potential of demand response in the smart island archipelago," Renewable Energy, Elsevier, vol. 176(C), pages 153-168.
    17. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    19. Sha Li & Zezhou Cao & Kuangqing Hu & Diyi Chen, 2023. "Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems," Energies, MDPI, vol. 16(3), pages 1-16, January.
    20. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.