IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3691-d936719.html
   My bibliography  Save this article

Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model

Author

Listed:
  • Oğuz Mısır

    (Department of Electronics and Automation, Turhal Vocational School, Tokat Gaziosmanpaşa University, Tokat 60150, Turkey)

  • Mehmet Akar

    (Department of Electric-Electronic Engineering, Faculty of Engineering and Architecture, Tokat Gaziosmanpaşa University, Tokat 60150, Turkey)

Abstract

Efficiency mapping has an important place in examining the maximum efficiency distribution as well as the energy consumption of designed electric motors at maximum torque and speed. Performing analysis at all operating points with FEM analysis in the motor design process requires high processing costs and time. In this article, a machine learning-based multivariate polynomial regression estimation model was developed to overcome these costly processes from FEM analysis. With the proposed method, the operating points of the motors in different conditions during the design process can be predicted in advance with high accuracy. In the study, two different models are developed for efficiency map and core loss estimation of interior permanent magnet synchronous motor design. The developed models use few parameters and predict with high accuracy. Estimation models shorten the design process and offer a less complex model. Obtained results are validated by comparison with FEM analysis.

Suggested Citation

  • Oğuz Mısır & Mehmet Akar, 2022. "Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3691-:d:936719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    2. Emad Roshandel & Amin Mahmoudi & Solmaz Kahourzade & Amirmehdi Yazdani & GM Shafiullah, 2021. "Losses in Efficiency Maps of Electric Vehicles: An Overview," Energies, MDPI, vol. 14(22), pages 1-27, November.
    3. Miriam Steurer & Robert J. Hill & Norbert Pfeifer, 2021. "Metrics for evaluating the performance of machine learning based automated valuation models," Journal of Property Research, Taylor & Francis Journals, vol. 38(2), pages 99-129, April.
    4. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantina Bitsi & Sjoerd G. Bosga & Oskar Wallmark, 2022. "Design Aspects and Performance Evaluation of Pole-Phase Changing Induction Machines," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    3. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    4. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    5. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    6. Zi-Qiang Zhu & Dawei Liang, 2022. "Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures," Energies, MDPI, vol. 15(21), pages 1-51, November.
    7. Anibal T. de Almeida & Fernando J. T. E. Ferreira & João Fong, 2023. "Perspectives on Electric Motor Market Transformation for a Net Zero Carbon Economy," Energies, MDPI, vol. 16(3), pages 1-16, January.
    8. Mahdi Tousizadeh & Amirmehdi Yazdani & Hang Seng Che & Hai Wang & Amin Mahmoudi & Nasrudin Abd Rahim, 2022. "A Generalized Fault Tolerant Control Based on Back EMF Feedforward Compensation: Derivation and Application on Induction Motors Drives," Energies, MDPI, vol. 16(1), pages 1-17, December.
    9. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    10. Hill, Robert J. & Trojanek, Radoslaw, 2022. "An evaluation of competing methods for constructing house price indexes: The case of Warsaw," Land Use Policy, Elsevier, vol. 120(C).
    11. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    12. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    13. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    14. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    15. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    16. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    17. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    18. Guo, Jingquan & Ma, Xinqiang & Ahmadpour, Ali, 2021. "Electrical–mechanical evaluation of the multi–cascaded induction motors under different conditions," Energy, Elsevier, vol. 229(C).
    19. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.
    20. Yuqing Yao & Chunhua Liu & Christopher H.T. Lee, 2018. "Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3691-:d:936719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.