IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5331-d427299.html
   My bibliography  Save this article

Nonlinear Active Disturbance Rejection Control of VGT-EGR System in Diesel Engines

Author

Listed:
  • Pingyue Zhang

    (Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
    School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China)

  • Jingyu Zhang

    (Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
    School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yingshun Li

    (School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yuhu Wu

    (Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China
    School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

In this paper, a nonlinear active disturbance rejection control (NLADRC) strategy based on nonlinear extended state observer (NLESO) is proposed to solve the unmodeled dynamics, coupling and disturbance due to change of working point in the variable geometry turbine (VGT) and exhaust gas recirculation (EGR) system, so as to achieve accurate control of intake manifold pressure and mass air flow in a diesel engine. To achieve decoupling, the double-input double-output (DIDO) VGT-EGR system is decomposed into two single-input single-output (SISO) subsystems, and each subsystem has a separate nonlinear active disturbance rejection controller. At the same time, the convergence proof of the designed NLESO is also given theoretically. Finally, the NLADRC controller is compared with linear active disturbance rejection controller and proportional–integral–derivative (PID) controller. Through simulation, it is indicated that the proposed NLADRC controller has better transient response performance, resistance to external disturbance and robustness to the change of engine operating point.

Suggested Citation

  • Pingyue Zhang & Jingyu Zhang & Yingshun Li & Yuhu Wu, 2020. "Nonlinear Active Disturbance Rejection Control of VGT-EGR System in Diesel Engines," Energies, MDPI, vol. 13(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5331-:d:427299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Xun & Zhang, Yahui & Shen, Tielong & Khajorntraidet, Chanyut, 2017. "Spark advance self-optimization with knock probability threshold for lean-burn operation mode of SI engine," Energy, Elsevier, vol. 122(C), pages 1-10.
    2. Gengjin Shi & Zhenlong Wu & Jian Guo & Donghai Li & Yanjun Ding, 2020. "Superheated Steam Temperature Control Based on a Hybrid Active Disturbance Rejection Control," Energies, MDPI, vol. 13(7), pages 1-26, April.
    3. Junnian Wang & Xiandong Wang & Zheng Luo & Francis Assadian, 2020. "Active Disturbance Rejection Control of Differential Drive Assist Steering for Electric Vehicles," Energies, MDPI, vol. 13(10), pages 1-22, May.
    4. Kai Zhou & Min Ai & Yancheng Sun & Xiaogang Wu & Ran Li, 2019. "PMSM Vector Control Strategy Based on Active Disturbance Rejection Controller," Energies, MDPI, vol. 12(20), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanca Viviana Martínez & Javier Sanchis & Sergio García-Nieto & Miguel Martínez, 2021. "Tuning Rules for Active Disturbance Rejection Controllers via Multiobjective Optimization—A Guide for Parameters Computation Based on Robustness," Mathematics, MDPI, vol. 9(5), pages 1-34, March.
    2. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    3. Pla, Benjamí n & Bares, Pau & Jiménez, Irina & Guardiola, Carlos & Zhang, Yahui & Shen, Tielong, 2020. "A fuzzy logic map-based knock control for spark ignition engines," Applied Energy, Elsevier, vol. 280(C).
    4. Xiaobo Cui & Pan Xu & Guohui Song & Haiming Gu & Hui Gu & Liang Wang & Hongxia Zhu, 2022. "PID Control of a Superheated Steam Temperature System Based on Integral Gain Scheduling," Energies, MDPI, vol. 15(23), pages 1-16, November.
    5. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    6. Hui-Yu Jin & Yang Chen, 2023. "First-Order Linear Active Disturbance Rejection Control for Turbofan Engines," Energies, MDPI, vol. 16(6), pages 1-17, March.
    7. Francis F. Assadian, 2022. "Advanced Control and Estimation Concepts and New Hardware Topologies for Future Mobility," Energies, MDPI, vol. 15(4), pages 1-3, February.
    8. Xiong, Wenyu & Ye, Jie & Gong, Qichangyi & Feng, Han & Xu, Jinbang & Shen, Anwen, 2022. "Multi-input model predictive speed control of lean-burn natural gas engine in range-extended electric vehicles," Energy, Elsevier, vol. 239(PB).
    9. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    10. Zenon Zwierzewicz & Lech Dorobczyński & Jarosław Artyszuk, 2021. "Design and Assessment of ADRC-Based Autopilot for Energy-Efficient Ship Steering," Energies, MDPI, vol. 14(23), pages 1-16, November.
    11. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    12. Ahmed Abdelhak Smadi & Farid Khoucha & Yassine Amirat & Abdeldjabar Benrabah & Mohamed Benbouzid, 2023. "Active Disturbance Rejection Control of an Interleaved High Gain DC-DC Boost Converter for Fuel Cell Applications," Energies, MDPI, vol. 16(3), pages 1-17, January.
    13. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    14. Pawel Nowak & Michal Fratczak & Patryk Grelewicz & Jacek Czeczot, 2022. "ADRC-Based Habituating Control of Double-Heater Heat Source," Energies, MDPI, vol. 15(14), pages 1-17, July.
    15. Kai Zhou & Min Ai & Dongyang Sun & Ningzhi Jin & Xiaogang Wu, 2019. "Field Weakening Operation Control Strategies of PMSM Based on Feedback Linearization," Energies, MDPI, vol. 12(23), pages 1-18, November.
    16. Mingfei Huang & Yongting Deng & Hongwen Li & Meng Shao & Jing Liu, 2021. "Integrated Uncertainty/Disturbance Suppression Based on Improved Adaptive Sliding Mode Controller for PMSM Drives," Energies, MDPI, vol. 14(20), pages 1-19, October.
    17. Xu, Zidan & Zhang, Yahui & Di, Huanyu & Shen, Tielong, 2019. "Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5331-:d:427299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.