IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4426-d289403.html
   My bibliography  Save this article

Traffic-Condition-Prediction-Based HMA-FIS Energy-Management Strategy for Fuel-Cell Electric Vehicles

Author

Listed:
  • Gang Yao

    (Sino-Dutch Mechatronics Engineering Department, Shanghai Maritime University, Shanghai 201306, China
    These authors contributed equally to this work.)

  • Changbo Du

    (Sino-Dutch Mechatronics Engineering Department, Shanghai Maritime University, Shanghai 201306, China
    These authors contributed equally to this work.)

  • Quanbo Ge

    (School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
    These authors contributed equally to this work.)

  • Haoyu Jiang

    (Hangzhou Zhongheng Power Cloud Technology Co., Ltd, Hangzhou 310053, China
    These authors contributed equally to this work.)

  • Yide Wang

    (IETR-UMR CNRS 6164, l’Universite de Nantes/Polytech Nantes, 44300 Nantes, France
    These authors contributed equally to this work.)

  • Mourad Ait-Ahmed

    (IREENA, l’Universite de Nantes/Polytech Nantes, 44602 Nantes, France
    These authors contributed equally to this work.)

  • Luc Moreau

    (IREENA, l’Universite de Nantes/Polytech Nantes, 44602 Nantes, France
    These authors contributed equally to this work.)

Abstract

In the field of Fuel Cell Electric Vehicles (FCEVs), a fuel-cell stack usually works together with a battery to improve powertrain performance. In this hybrid-power system, an Energy Management Strategy (EMS) is essential to configure the hybrid-power sources to provide sufficient energy for driving the FCEV in different traffic conditions. The EMS determines the overall performance of the power supply system; accordingly, EMS research has important theoretical significance and application values on the improvement of energy-utilization efficiency and the serviceability of vehicles’ hybrid-power sources. To overcome the deficiency of apparent filtering lag and improve the adaptability of an EMS to different traffic conditions, this paper proposes a novel EMS based on traffic-condition predictions, frequency decoupling and a Fuzzy Inference System (FIS). An Artificial Neural Network (ANN) was designed to predict traffic conditions according to the vehicle’s running parameters; then, a Hull Moving Average (HMA) algorithm, with filter-window width decided by the prediction result, is introduced to split the demanded power and keep low-frequency components in order to meet the load characteristics of the fuel cell; afterward, an FIS was applied to manage power flows of the FCEV’s hybrid-power sources and maintain the State of Change (SoC) of the battery in a predefined range. Finally, an FCEV simulation platform was built with MATLAB/Simulink and comparison simulations were carried out with the standard test cycle of the Worldwide harmonized Light vehicle Test Procedures (WLTPs). Simulation results showed that the proposed EMS could efficiently coordinate the hybrid-power sources and support the FCEV in following the reference speed with negligible control errors and sufficient power supply; the SoC of the battery was also maintained with good adaptability in different driving conditions.

Suggested Citation

  • Gang Yao & Changbo Du & Quanbo Ge & Haoyu Jiang & Yide Wang & Mourad Ait-Ahmed & Luc Moreau, 2019. "Traffic-Condition-Prediction-Based HMA-FIS Energy-Management Strategy for Fuel-Cell Electric Vehicles," Energies, MDPI, vol. 12(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4426-:d:289403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    2. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    3. Yu, Huilong & Tarsitano, Davide & Hu, Xiaosong & Cheli, Federico, 2016. "Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system," Energy, Elsevier, vol. 112(C), pages 322-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phatiphat Thounthong & Pongsiri Mungporn & Serge Pierfederici & Damien Guilbert & Nicu Bizon, 2020. "Adaptive Control of Fuel Cell Converter Based on a New Hamiltonian Energy Function for Stabilizing the DC Bus in DC Microgrid Applications," Mathematics, MDPI, vol. 8(11), pages 1-25, November.
    2. Adriano Ceschia & Toufik Azib & Olivier Bethoux & Francisco Alves, 2020. "Optimal Sizing of Fuel Cell Hybrid Power Sources with Reliability Consideration," Energies, MDPI, vol. 13(13), pages 1-18, July.
    3. Phatiphat Thounthong & Matheepot Phattanasak & Damien Guilbert & Noureddine Takorabet & Serge Pierfederici & Babak Nahid-Mobarakeh & Nicu Bizon & Poom Kumam, 2020. "Differential Flatness Based-Control Strategy of a Two-Port Bidirectional Supercapacitor Converter for Hydrogen Mobility Applications," Energies, MDPI, vol. 13(11), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    2. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    3. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    4. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).
    5. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    6. Hung, Yi-Hsuan & Tung, Yu-Ming & Chang, Chun-Hsin, 2016. "Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain," Applied Energy, Elsevier, vol. 173(C), pages 184-196.
    7. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    8. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Song, Ziyou & Li, Jianqiu & Hou, Jun & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study," Energy, Elsevier, vol. 154(C), pages 433-441.
    10. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    11. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).
    12. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    13. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    14. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
    15. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    16. Nicu Bizon & Phatiphat Thounthong, 2020. "Energy Efficiency and Fuel Economy of a Fuel Cell/Renewable Energy Sources Hybrid Power System with the Load-Following Control of the Fueling Regulators," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    17. Yang, Chao & Li, Liang & You, Sixiong & Yan, Bingjie & Du, Xian, 2017. "Cloud computing-based energy optimization control framework for plug-in hybrid electric bus," Energy, Elsevier, vol. 125(C), pages 11-26.
    18. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    19. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    20. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4426-:d:289403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.