IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp393-402.html
   My bibliography  Save this article

A hierarchical predictive control for supercapacitor-retrofitted grid-connected hybrid renewable systems

Author

Listed:
  • Masaki, Mukalu Sandro
  • Zhang, Lijun
  • Xia, Xiaohua

Abstract

This paper presents a two-layer control strategy designed for easy integration of supercapacitors in a grid-integrated solar photovoltaic-battery hybrid renewable system, initially controlled by a typical model predictive control method. To operate the upgraded energy system, either without or with little modifications of the pre-existing architecture, an additional control layer is applied at the bottom of the original control system. Considering the complementary characteristics of batteries and supercapacitors, the design of the new model predictive control layer and its coordination with the original one help to deliver a stable power flow between the hybrid renewable system and the utility grid, and remove fast variations from the battery power. Actual measurements of solar radiation in South Africa are used to test the effectiveness of the proposed strategy. Simulations carried out on a 1-MW photovoltaic plant confirm the benefits in terms of adherence to power quality regulations, improved conditioning of the power generated by the intermittent renewable sources, and lifetime extension of the battery.

Suggested Citation

  • Masaki, Mukalu Sandro & Zhang, Lijun & Xia, Xiaohua, 2019. "A hierarchical predictive control for supercapacitor-retrofitted grid-connected hybrid renewable systems," Applied Energy, Elsevier, vol. 242(C), pages 393-402.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:393-402
    DOI: 10.1016/j.apenergy.2019.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930457X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Changle Xiang & Yanzi Wang & Sideng Hu & Weida Wang, 2014. "A New Topology and Control Strategy for a Hybrid Battery-Ultracapacitor Energy Storage System," Energies, MDPI, vol. 7(5), pages 1-23, April.
    2. Pedro Roncero-Sánchez & Alfonso Parreño Torres & Javier Vázquez, 2018. "Control Scheme of a Concentration Photovoltaic Plant with a Hybrid Energy Storage System Connected to the Grid," Energies, MDPI, vol. 11(2), pages 1-30, January.
    3. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    4. Chang Ye & Shihong Miao & Qi Lei & Yaowang Li, 2016. "Dynamic Energy Management of Hybrid Energy Storage Systems with a Hierarchical Structure," Energies, MDPI, vol. 9(6), pages 1-15, May.
    5. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    6. Xiaojuan Han & Fang Chen & Xiwang Cui & Yong Li & Xiangjun Li, 2012. "A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology," Energies, MDPI, vol. 5(5), pages 1-20, May.
    7. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    8. Hu, Jiefeng & Xu, Yinliang & Cheng, Ka Wai & Guerrero, Josep M., 2018. "A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions," Applied Energy, Elsevier, vol. 221(C), pages 195-203.
    9. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    10. Aktas, Ahmet & Erhan, Koray & Özdemir, Sule & Özdemir, Engin, 2018. "Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications," Energy, Elsevier, vol. 162(C), pages 72-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    2. Lin, Dong & Zhang, Lijun & Xia, Xiaohua, 2021. "Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption," Applied Energy, Elsevier, vol. 298(C).
    3. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    4. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    5. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    6. Nicu Bizon & Phatiphat Thounthong, 2020. "Energy Efficiency and Fuel Economy of a Fuel Cell/Renewable Energy Sources Hybrid Power System with the Load-Following Control of the Fueling Regulators," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    7. Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    2. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    3. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    4. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    5. Kim, Myungchin & Bae, Sungwoo, 2017. "Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system," Applied Energy, Elsevier, vol. 188(C), pages 444-455.
    6. Al Essa, Mohammed Jasim M., 2019. "Home energy management of thermostatically controlled loads and photovoltaic-battery systems," Energy, Elsevier, vol. 176(C), pages 742-752.
    7. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    8. Dogga Raveendhra & Rajana Poojitha & Beeramangalla Lakshminarasaiah Narasimharaju & Aliona Dreglea & Fang Liu & Daniil Panasetsky & Mukesh Pathak & Denis Sidorov, 2023. "Part-I: State-of-the-Art Technologies of Solar Powered DC Microgrid with Hybrid Energy Storage Systems-Architecture Topologies," Energies, MDPI, vol. 16(2), pages 1-21, January.
    9. Logeswaran, T. & Senthil Raja, M. & Beevi Sahul Hameed, Jennathu & Abdulrahim, Mahabuba, 2022. "Power flow management of hybrid system in smart grid requirements using ITSA-MOAT approach," Applied Energy, Elsevier, vol. 319(C).
    10. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    11. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    12. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    13. Stephan Kigle & Michael Ebner & Andrej Guminski, 2022. "Greenhouse Gas Abatement in EUROPE—A Scenario-Based, Bottom-Up Analysis Showing the Effect of Deep Emission Mitigation on the European Energy System," Energies, MDPI, vol. 15(4), pages 1-18, February.
    14. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    15. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    16. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    17. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    18. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    19. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    20. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:393-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.