IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v282y2021ipas0306261920314288.html
   My bibliography  Save this article

Time-optimal gearshift and energy management strategies for a hybrid electric race car

Author

Listed:
  • Duhr, Pol
  • Christodoulou, Grigorios
  • Balerna, Camillo
  • Salazar, Mauro
  • Cerofolini, Alberto
  • Onder, Christopher H.

Abstract

Modern Formula 1 race cars are hybrid electric vehicles equipped with an internal combustion engine and an electric energy recovery system. In order to achieve the fastest possible lap time, the components’ operation must be carefully optimized, and the energy management must account for the impact of the gearshift strategy on the overall performance. This paper presents an algorithm to calculate the time-optimal energy management and gearshift strategies for the Formula 1 race car. First, we leverage a convex modeling approach to formulate a mathematical description of the powertrain including the gearbox, preserving convexity for a given engine speed trajectory. Second, we devise a computationally efficient algorithm to compute the energy management and gearshift strategies for minimum lap time, under consideration of given fuel and battery consumption targets. In particular, we combine convex optimization, dynamic programming and Pontryagin’s minimum principle in an iterative scheme to solve the arising mixed-integer optimization problem. We showcase our algorithm with a case study for the Bahrain racetrack, underlining the interactions between energy management and gear selection. Finally, we use our approach as a benchmark to evaluate the sub-optimality of a heuristic gearshift rule. Our results show that using an optimized engine speed threshold for upshifts can yield close-to-optimal results. However, already deviations smaller than 4% from the best possible threshold can increase lap time by more than 100ms, highlighting the importance of jointly optimizing energy management and gearshift strategies.

Suggested Citation

  • Duhr, Pol & Christodoulou, Grigorios & Balerna, Camillo & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher H., 2021. "Time-optimal gearshift and energy management strategies for a hybrid electric race car," Applied Energy, Elsevier, vol. 282(PA).
  • Handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920314288
    DOI: 10.1016/j.apenergy.2020.115980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    2. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
    3. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    4. Sánchez, Marcelino & Delprat, Sébastien & Hofman, Theo, 2020. "Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach," Applied Energy, Elsevier, vol. 260(C).
    5. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    6. Pérez, Laura V. & Pilotta, Elvio A., 2009. "Optimal power split in a hybrid electric vehicle using direct transcription of an optimal control problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1959-1970.
    7. Liu, Xuze & Fotouhi, Abbas & Auger, Daniel J., 2020. "Optimal energy management for formula-E cars with regulatory limits and thermal constraints," Applied Energy, Elsevier, vol. 279(C).
    8. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Huanlong & Chen, Guanpeng & Li, Dafa & Wang, Jiawei & Zhou, Jianyi, 2021. "Energy active adjustment and bidirectional transfer management strategy of the electro-hydrostatic hydraulic hybrid powertrain for battery bus," Energy, Elsevier, vol. 230(C).
    2. V. Mounica & Y. P. Obulesu, 2022. "Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application," Energies, MDPI, vol. 15(12), pages 1-25, June.
    3. Li, Guozhen & Zhang, Zhenyu & Shi, Wankai & Li, Wenyong, 2023. "Energy management strategy and simulation analysis of a hybrid train based on a comprehensive efficiency optimization," Applied Energy, Elsevier, vol. 349(C).
    4. Cong Ji & Elkhatib Kamal & Reza Ghorbani, 2024. "Reliable Energy Optimization Strategy for Fuel Cell Hybrid Electric Vehicles Considering Fuel Cell and Battery Health," Energies, MDPI, vol. 17(18), pages 1-26, September.
    5. Marek Krok & Paweł Majewski & Wojciech P. Hunek & Tomasz Feliks, 2022. "Energy Optimization of the Continuous-Time Perfect Control Algorithm," Energies, MDPI, vol. 15(4), pages 1-13, February.
    6. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camillo Balerna & Marc-Philippe Neumann & Nicolò Robuschi & Pol Duhr & Alberto Cerofolini & Vittorio Ravaglioli & Christopher Onder, 2020. "Time-Optimal Low-Level Control and Gearshift Strategies for the Formula 1 Hybrid Electric Powertrain," Energies, MDPI, vol. 14(1), pages 1-30, December.
    2. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    3. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
    4. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    5. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    6. Li, Yapeng & Tang, Xiaolin & Lin, Xianke & Grzesiak, Lech & Hu, Xiaosong, 2022. "The role and application of convex modeling and optimization in electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Shabbir, Wassif & Evangelou, Simos A., 2014. "Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency," Applied Energy, Elsevier, vol. 135(C), pages 512-522.
    8. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    9. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    10. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2022. "Real-Time Energy Management Strategy Based on Driving Conditions Using a Feature Fusion Extreme Learning Machine," Energies, MDPI, vol. 15(12), pages 1-22, June.
    11. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.
    12. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
    13. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2020. "A Review of the Integrated Design and Control of Electrified Vehicles," Energies, MDPI, vol. 13(20), pages 1-31, October.
    14. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    15. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    16. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    17. Ritter, Andreas & Widmer, Fabio & Duhr, Pol & Onder, Christopher H., 2022. "Long-term stochastic model predictive control for the energy management of hybrid electric vehicles using Pontryagin’s minimum principle and scenario-based optimization," Applied Energy, Elsevier, vol. 322(C).
    18. Gao, Sichen & Zong, Yuhua & Ju, Fei & Wang, Qun & Huo, Weiwei & Wang, Liangmo & Wang, Tao, 2024. "Scenario-oriented adaptive ECMS using speed prediction for fuel cell vehicles in real-world driving," Energy, Elsevier, vol. 304(C).
    19. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    20. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920314288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.