IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3787-d273890.html
   My bibliography  Save this article

Towards the Development of Syngas/Biomethane Electrolytic Production, Using Liquefied Biomass and Heterogeneous Catalyst

Author

Listed:
  • Ana Gonçalves

    (Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R, Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal)

  • Jaime Filipe Puna

    (Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R, Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
    CERENA—Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal)

  • Luís Guerra

    (GSyF, Pol. Ind. Alto do Ameal, Pavilhão C-13, 2565-641 Torres Vedras, Portugal)

  • José Campos Rodrigues

    (GSyF, Pol. Ind. Alto do Ameal, Pavilhão C-13, 2565-641 Torres Vedras, Portugal)

  • João Fernando Gomes

    (Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R, Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
    CERENA—Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal)

  • Maria Teresa Santos

    (Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R, Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal)

  • Diogo Alves

    (Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R, Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal)

Abstract

This paper presents results on the research currently being carried out with the objective of developing new electrochemistry-based processes to produce renewable synthetic fuels from liquefied biomass. In the current research line, the gas mixtures obtained from the typical electrolysis are not separated into their components but rather are introduced into a reactor together with liquefied biomass, at atmospheric pressure and different temperatures, under acidified zeolite Y catalyst, to obtain synthesis gas. This gaseous mixture has several applications, like the production of synthetic 2nd generation biofuel (e. g., biomethane, biomethanol, bio-dimethyl ether, formic acid, etc.). The behaviour of operational parameters such as biomass content, temperature and the use of different amounts of acidified zeolite HY catalyst were investigated. In the performed tests, it was found that, in addition to the synthesis gas (hydrogen, oxygen, carbon monoxide and carbon dioxide), methane was also obtained. Therefore, this research is quite promising, and the most favourable results were obtained by carrying out the biomass test at 300 °C, together with 4% of acidified zeolite Y catalyst, which gives a methane volumetric concentration equal to 35%.

Suggested Citation

  • Ana Gonçalves & Jaime Filipe Puna & Luís Guerra & José Campos Rodrigues & João Fernando Gomes & Maria Teresa Santos & Diogo Alves, 2019. "Towards the Development of Syngas/Biomethane Electrolytic Production, Using Liquefied Biomass and Heterogeneous Catalyst," Energies, MDPI, vol. 12(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3787-:d:273890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    2. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    3. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    4. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    5. Guerra, L. & Gomes, J. & Puna, J. & Rodrigues, J., 2015. "Preliminary study of synthesis gas production from water electrolysis, using the ELECTROFUEL® concept," Energy, Elsevier, vol. 89(C), pages 1050-1056.
    6. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    7. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    2. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Zhang, Ruina & Yu, Weiwei, 2022. "Producing eco-methane with raw syngas containing miscellaneous gases and tar by using a municipal solid waste char-based catalyst," Energy, Elsevier, vol. 254(PA).
    3. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    4. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    5. Marcin Pajak & Grzegorz Brus & Janusz S. Szmyd, 2021. "Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming," Energies, MDPI, vol. 14(17), pages 1-14, September.
    6. Park, Hoyoung & Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible thermochemical process for methanol production from kenaf," Energy, Elsevier, vol. 230(C).
    7. Jamei, Mehdi & Sharma, Prabhakar & Ali, Mumtaz & Bora, Bhaskor J. & Malik, Anurag & Paramasivam, Prabhu & Farooque, Aitazaz A. & Abdulla, Shahab, 2024. "Application of an explainable glass-box machine learning approach for prognostic analysis of a biogas-powered small agriculture engine," Energy, Elsevier, vol. 288(C).
    8. Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
    9. Ybray, Sultan & Dikhanbaev, Arystan & Dikhanbaev, Bayandy & Mergalimova, Almagul & Georgiev, Aleksandar, 2023. "Development of a technology for the production of hydrogen-enriched synthesis gas with waste-free processing of Ekibastuz coal," Energy, Elsevier, vol. 278(PA).
    10. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    11. Katla, Daria & Jurczyk, Michał & Skorek-Osikowska, Anna & Uchman, Wojciech, 2021. "Analysis of the integrated system of electrolysis and methanation units for the production of synthetic natural gas (SNG)," Energy, Elsevier, vol. 237(C).
    12. Qin, Kang & Ye, Sishi & Wu, Le, 2024. "Process design and analysis of a net-zero carbon emissions hydrocracking unit integrating co-processing technique with green hydrogen and electricity," Energy, Elsevier, vol. 295(C).
    13. João Gomes & Jaime Puna & António Marques & Jorge Gominho & Ana Lourenço & Rui Galhano & Sila Ozkan, 2022. "Clean Forest—Project Concept and Early Results," Energies, MDPI, vol. 15(24), pages 1-7, December.
    14. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
    3. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    5. Mei Yin Ong & Saifuddin Nomanbhay, 2022. "Optimization Study on Microwave-Assisted Hydrothermal Liquefaction of Malaysian Macroalgae Chaetomorpha sp. for Phenolic-Rich Bio-Oil Production," Energies, MDPI, vol. 15(11), pages 1-22, May.
    6. Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
    7. Mariusz Wądrzyk & Marek Plata & Kamila Zaborowska & Rafał Janus & Marek Lewandowski, 2021. "Py-GC-MS Study on Catalytic Pyrolysis of Biocrude Obtained via HTL of Fruit Pomace," Energies, MDPI, vol. 14(21), pages 1-16, November.
    8. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    9. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    10. Chand, Rishav & Babu Borugadda, Venu & Qiu, Michael & Dalai, Ajay K., 2019. "Evaluating the potential for bio-fuel upgrading: A comprehensive analysis of bio-crude and bio-residue from hydrothermal liquefaction of agricultural biomass," Applied Energy, Elsevier, vol. 254(C).
    11. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    13. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    14. Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
    15. Li, Qingyin & Zhang, Shu & Wang, Yi & Xiang, Jun & Hu, Song & Yuan, Xiangzhou & Gholizadeh, Mortaza & Hu, Xun, 2021. "Ionic liquid coupled with nickel salt for enhancing the hydro-liquefaction efficiency of the major biomass components," Renewable Energy, Elsevier, vol. 175(C), pages 296-306.
    16. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Moreno-Sader, K. & Meramo-Hurtado, S.I. & González-Delgado, A.D., 2019. "Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 42-57.
    18. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuan-Cheng & Baroutian, Saeid, 2020. "Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis," Energy, Elsevier, vol. 199(C).
    19. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    20. David Längauer & Yu-Ying Lin & Wei-Hsin Chen & Chao-Wen Wang & Michal Šafář & Vladimír Čablík, 2018. "Simultaneous Extraction and Emulsification of Food Waste Liquefaction Bio-Oil," Energies, MDPI, vol. 11(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3787-:d:273890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.