IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012112.html
   My bibliography  Save this article

Development of a technology for the production of hydrogen-enriched synthesis gas with waste-free processing of Ekibastuz coal

Author

Listed:
  • Ybray, Sultan
  • Dikhanbaev, Arystan
  • Dikhanbaev, Bayandy
  • Mergalimova, Almagul
  • Georgiev, Aleksandar

Abstract

This work aims to develop a unit of a new generation “reactor inversion phase-rotary kiln-gasifier” that enables: extraction from the slag 70% of Ge, Zn, and non-ferrous metals into sublimates; recovering 75% of iron, and using it as a reagent for creating additional mole of hydrogen; obtaining a smelt suitable for the production of building materials. A novel method for thermodynamic calculation of steam gasification of iron makes it possible to predict the specific yield of hydrogen by 63% more than with coal gasification is developed. During experiments on Ekibastuz coal, it is obtained syngas with a ratio H2/CO = 6.0 which is 2–3 times higher than in traditional gasifiers. It is predicted that in the case of joint coal-iron gasification, a ratio of H2/CO will be higher. The melting unit produces combustible gas with a calorific value of 7.0 MJ/nm3 and allows coal-iron gasification in fuel-free mode. An assessment shows: with the maximum wholesale price of natural gas (NG) on the market at 0.062$/m3, and in equivalent characteristics in relation to the NG, the cost of syngas produced in the system will be 0.025$/m3, which is 2–3 times lower than the cost of NG in Kazakhstan.

Suggested Citation

  • Ybray, Sultan & Dikhanbaev, Arystan & Dikhanbaev, Bayandy & Mergalimova, Almagul & Georgiev, Aleksandar, 2023. "Development of a technology for the production of hydrogen-enriched synthesis gas with waste-free processing of Ekibastuz coal," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012112
    DOI: 10.1016/j.energy.2023.127817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Zaiguo & Gao, Huanhuan & Zeng, Zhuoxiong & Liu, Jiang & Zhu, Qunzhi, 2020. "Generation characteristics of thermal NOx in a double-swirler annular combustor under various inlet conditions," Energy, Elsevier, vol. 200(C).
    2. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    3. Ana Gonçalves & Jaime Filipe Puna & Luís Guerra & José Campos Rodrigues & João Fernando Gomes & Maria Teresa Santos & Diogo Alves, 2019. "Towards the Development of Syngas/Biomethane Electrolytic Production, Using Liquefied Biomass and Heterogeneous Catalyst," Energies, MDPI, vol. 12(19), pages 1-21, October.
    4. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    5. Mosayebi, Amir & Eghbal Ahmadi, Mohammad Hosein, 2022. "Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis," Energy, Elsevier, vol. 261(PB).
    6. Mergalimova, Almagul & Ongar, Bulbul & Georgiev, Aleksandar & Каlieva, Кazima & Abitaeva, Rakhimash & Bissenbayev, Parassat, 2021. "Parameters of heat treatment of coal to obtain combustible volatile substances," Energy, Elsevier, vol. 224(C).
    7. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    8. Gyujin Song & Jun Young Cheong & Chanhoon Kim & Langli Luo & Chihyun Hwang & Sungho Choi & Jaegeon Ryu & Sungho Kim & Woo-Jin Song & Hyun-Kon Song & Chongmin Wang & Il-Doo Kim & Soojin Park, 2019. "Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Haoran & Tong, Sirui & Qi, Zhifu & Liu, Fei & Sun, Shien & Han, Long, 2023. "Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers," Energy, Elsevier, vol. 263(PE).
    2. Park, Hoyoung & Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible thermochemical process for methanol production from kenaf," Energy, Elsevier, vol. 230(C).
    3. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    4. Zheng, Qiangang & Zhang, Hongwei & Hu, Chenxu & Zhang, Haibo, 2024. "Performance seeking control method for minimum pollutant emission mode for turbofan engine," Energy, Elsevier, vol. 289(C).
    5. Ji, Bingnan & Pan, Hongyu & Pang, Mingkun & Pan, Mingyue & Zhang, Hang & Zhang, Tianjun, 2023. "Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures," Energy, Elsevier, vol. 282(C).
    6. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    7. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    8. Dikhanbaev, Bayandy & Dikhanbaev, Arystan & Koshumbayev, Marat & Ybray, Sultan & Mergalimova, Almagul & Georgiev, Aleksandar, 2024. "On the issue of neutralizing carbon dioxide at processing coal in boilers of thermal power plants," Energy, Elsevier, vol. 295(C).
    9. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Coal rank-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs," Energy, Elsevier, vol. 270(C).
    10. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    11. Shi, Xueqiang & Chen, Xiaokun & Zhang, Yutao & Zhang, Yuanbo & Guo, Ruizhi & Zhao, Tenglong & Liu, Rui, 2022. "Numerical simulation of coal dust self–ignition and combustion under inclination conditions," Energy, Elsevier, vol. 239(PC).
    12. Marcin Pajak & Grzegorz Brus & Janusz S. Szmyd, 2021. "Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming," Energies, MDPI, vol. 14(17), pages 1-14, September.
    13. Zeng, Jia & Xuan, Yimin & Li, Qiang, 2023. "Direct solar-thermal scalable-decomposition of methanol flowing through a nanoparticle-packed bed reactor under outdoor environment," Energy, Elsevier, vol. 280(C).
    14. Jamei, Mehdi & Sharma, Prabhakar & Ali, Mumtaz & Bora, Bhaskor J. & Malik, Anurag & Paramasivam, Prabhu & Farooque, Aitazaz A. & Abdulla, Shahab, 2024. "Application of an explainable glass-box machine learning approach for prognostic analysis of a biogas-powered small agriculture engine," Energy, Elsevier, vol. 288(C).
    15. Katla, Daria & Jurczyk, Michał & Skorek-Osikowska, Anna & Uchman, Wojciech, 2021. "Analysis of the integrated system of electrolysis and methanation units for the production of synthetic natural gas (SNG)," Energy, Elsevier, vol. 237(C).
    16. Liu, Mingyu & Chen, Sheng & Zhu, Hongwei & Zhou, Zijian & Xu, Jingying, 2023. "Numerical investigation of ammonia/coal co-combustion in a low NOx swirl burner," Energy, Elsevier, vol. 282(C).
    17. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Zhang, Ruina & Yu, Weiwei, 2022. "Producing eco-methane with raw syngas containing miscellaneous gases and tar by using a municipal solid waste char-based catalyst," Energy, Elsevier, vol. 254(PA).
    18. Lopez-Ruiz, G. & Alava, I. & Urresti, I. & Blanco, J.M. & Naud, B., 2021. "Experimental and numerical study of NOx formation in a domestic H2/air coaxial burner at low Reynolds number," Energy, Elsevier, vol. 221(C).
    19. Jun Liu & Gan Feng & Peng Zhao, 2023. "Application and Optimization of CCUS Technology in Shale Gas Production and Storage," Energies, MDPI, vol. 16(14), pages 1-3, July.
    20. Shi, Xuhang & Song, Jintao & Cheng, Ziming & Liang, Huaxu & Dong, Yan & Wang, Fuqiang & Zhang, Wenjing, 2023. "Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency," Renewable Energy, Elsevier, vol. 207(C), pages 436-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.