IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v97y2016icp460-469.html
   My bibliography  Save this article

Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications

Author

Listed:
  • Desideri, Adriano
  • Gusev, Sergei
  • van den Broek, Martijn
  • Lemort, Vincent
  • Quoilin, Sylvain

Abstract

This contribution experimentally evaluates and compares the performance of an ORC (organic Rankine cycle) system for stationary bottoming WHR (waste heat recovery) application operating with two different working fluids, SES36 and R245fa. The test rig is a regenerative cycle equipped with a single screw expander modified from a standard compressor characterized by a nominal shaft power of 11 kW. A total of 36 and 43 steady-state points are collected for SES36 and R245fa respectively, over a wide range of operating conditions by changing the expander rotational speed, the pump frequency and the cooling condenser flow rate. The performances of the ORC components are individually evaluated. A maximum expander isentropic efficiency of 60% is reached using SES36 at 3000 rpm, and a value of 52% is reached with R245fa at 3000 rpm. However, for a given pressure ratio the expander output power is higher with R245fa than with SES36. The overall performance of the ORC unit are investigated in terms of first and second law efficiencies and net output power for the two fluids. The results experimentally demonstrate the correlation between the working fluid critical temperature and the ORC unit working characteristics for low temperature waste heat recovery applications. Open experimental data are provided for both fluids.

Suggested Citation

  • Desideri, Adriano & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications," Energy, Elsevier, vol. 97(C), pages 460-469.
  • Handle: RePEc:eee:energy:v:97:y:2016:i:c:p:460-469
    DOI: 10.1016/j.energy.2015.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    2. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    3. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    4. Wang, Wei & Wu, Yu-ting & Ma, Chong-fang & Xia, Guo-dong & Wang, Jing-fu, 2013. "Experimental study on the performance of single screw expanders by gap adjustment," Energy, Elsevier, vol. 62(C), pages 379-384.
    5. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    6. Bala, E. J. & O'Callaghan, P. W. & Probert, S. D., 1985. "Influence of organic working fluids on the performance of a positive-displacement pump with sliding vanes," Applied Energy, Elsevier, vol. 20(2), pages 153-159.
    7. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    2. Sung, Taehong & Yun, Eunkoo & Kim, Hyun Dong & Yoon, Sang Youl & Choi, Bum Seog & Kim, Kuisoon & Kim, Jangmok & Jung, Yang Beom & Kim, Kyung Chun, 2016. "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant," Applied Energy, Elsevier, vol. 183(C), pages 623-635.
    3. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    4. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
    5. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    6. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    7. Tang, Hao & Wu, Huagen & Wang, Xiaolin & Xing, Ziwen, 2015. "Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator," Energy, Elsevier, vol. 90(P1), pages 631-642.
    8. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    9. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    10. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    11. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    12. Larsen, Ulrik & Pierobon, Leonardo & Wronski, Jorrit & Haglind, Fredrik, 2014. "Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles," Energy, Elsevier, vol. 65(C), pages 503-510.
    13. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    14. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    15. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    16. Braimakis, Konstantinos & Karellas, Sotirios, 2018. "Exergetic optimization of double stage Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 149(C), pages 296-313.
    17. Giuffrida, Antonio, 2018. "A theoretical study on the performance of a scroll expander in an organic Rankine cycle with hydrofluoroolefins (HFOs) in place of R245fa," Energy, Elsevier, vol. 161(C), pages 1172-1180.
    18. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    19. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    20. Grelet, Vincent & Reiche, Thomas & Lemort, Vincent & Nadri, Madiha & Dufour, Pascal, 2016. "Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks," Applied Energy, Elsevier, vol. 165(C), pages 878-892.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:97:y:2016:i:c:p:460-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.