IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p501-d203565.html
   My bibliography  Save this article

Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses

Author

Listed:
  • Tilia Dahou

    (Institut des Sciences des Matériaux de Mulhouse IS2M-UMR 7361CNRS-UHA, 3 bis rue A, Werner, 68098 Mulhouse CEDEX, France)

  • Patrick Dutournié

    (Institut des Sciences des Matériaux de Mulhouse IS2M-UMR 7361CNRS-UHA, 3 bis rue A, Werner, 68098 Mulhouse CEDEX, France)

  • Lionel Limousy

    (Institut des Sciences des Matériaux de Mulhouse IS2M-UMR 7361CNRS-UHA, 3 bis rue A, Werner, 68098 Mulhouse CEDEX, France)

  • Simona Bennici

    (Institut des Sciences des Matériaux de Mulhouse IS2M-UMR 7361CNRS-UHA, 3 bis rue A, Werner, 68098 Mulhouse CEDEX, France)

  • Nicolas Perea

    (Réseaux de Chaleur Urbain d’Alsace (RCUA) 17 Place des Halles, 67000 Strasbourg, France)

Abstract

The aim of this paper is to improve the operating share of a biomass cogeneration unit by using unavoidable heat waste heat recovered from a district network heating used for drying woody biomass’ return water (law-grade temperature heat). The optimal operating conditions of a drying unit added to the system were estimated from an energy and a financial point of view, applying four objective functions (drying time, energy consumption, energy balance, and financial performance of the cogeneration unit). An experimental design methodology used heat for the implementation of these functions and to obtain an operating chart. Numerical modelling was performed to develop a simulation tool able to illustrate the unsteady operations able to take into account the available waste heat. Surprisingly, the model shows that the right strategy to increase the financial gain is to produce more warm water than necessary and to consequently dispose higher quantities of unavoidable heat in the network’s return water, which heat up the drying air at a higher temperature. This result contrasts with the current approaches of setting-up cogeneration units that are based on the minimization of the heat production.

Suggested Citation

  • Tilia Dahou & Patrick Dutournié & Lionel Limousy & Simona Bennici & Nicolas Perea, 2019. "Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses," Energies, MDPI, vol. 12(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:501-:d:203565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng Chen & Zhen Qi & Qiao Chen & Yunyun Wu & Gang Xu & Yongping Yang, 2018. "Modified High Back-Pressure Heating System Integrated with Raw Coal Pre-Drying in Combined Heat and Power Unit," Energies, MDPI, vol. 11(9), pages 1-16, September.
    2. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    3. Francisco José Sepúlveda & José Ignacio Arranz & María Teresa Miranda & Irene Montero & Carmen Victoria Rojas, 2018. "Drying and Pelletizing Analysis of Waste from Cork Granulated Industry," Energies, MDPI, vol. 11(1), pages 1-14, January.
    4. Nadal, Ana & Llorach-Massana, Pere & Cuerva, Eva & López-Capel, Elisa & Montero, Juan Ignacio & Josa, Alejandro & Rieradevall, Joan & Royapoor, Mohammad, 2017. "Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context," Applied Energy, Elsevier, vol. 187(C), pages 338-351.
    5. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    6. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    7. Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
    8. Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
    9. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    10. Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
    11. Mejdi Jeguirim & Patrick Dutournié & Antonis A. Zorpas & Lionel Limousy, 2017. "Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics," Energies, MDPI, vol. 10(9), pages 1-16, September.
    12. Lundström, Lukas & Wallin, Fredrik, 2016. "Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system," Applied Energy, Elsevier, vol. 161(C), pages 290-299.
    13. van de Bor, D.M. & Infante Ferreira, C.A. & Kiss, Anton A., 2015. "Low grade waste heat recovery using heat pumps and power cycles," Energy, Elsevier, vol. 89(C), pages 864-873.
    14. Bao, Huashan & Wang, Yaodong & Charalambous, Constantinos & Lu, Zisheng & Wang, Liwei & Wang, Ruzhu & Roskilly, Anthony Paul, 2014. "Chemisorption cooling and electric power cogeneration system driven by low grade heat," Energy, Elsevier, vol. 72(C), pages 590-598.
    15. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    2. Kumar, Prashant & Kishore, Ravi Anant & Maurya, Deepam & Stewart, Colin J. & Mirzaeifar, Reza & Quandt, Eckhard & Priya, Shashank, 2019. "Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
    5. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    6. Christensen, Morten Herget & Li, Rongling & Pinson, Pierre, 2020. "Demand side management of heat in smart homes: Living-lab experiments," Energy, Elsevier, vol. 195(C).
    7. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    8. Shifei Zhao & Weishu Wang & Zhihua Ge, 2020. "Energy and Exergy Evaluations of a Combined Heat and Power System with a High Back-Pressure Turbine under Full Operating Conditions," Energies, MDPI, vol. 13(17), pages 1-18, August.
    9. Eyerer, Sebastian & Dawo, Fabian & Schifflechner, Christopher & Niederdränk, Anne & Spliethoff, Hartmut & Wieland, Christoph, 2022. "Experimental evaluation of an ORC-CHP architecture based on regenerative preheating for geothermal applications," Applied Energy, Elsevier, vol. 315(C).
    10. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    11. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    12. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
    13. Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
    14. Tina Lidberg & Thomas Olofsson & Louise Ödlund, 2019. "Impact of Domestic Hot Water Systems on District Heating Temperatures," Energies, MDPI, vol. 12(24), pages 1-14, December.
    15. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    16. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    17. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    18. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    19. Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
    20. Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:501-:d:203565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.