IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp283-291.html
   My bibliography  Save this article

A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources

Author

Listed:
  • He, Chao
  • Liu, Chao
  • Zhou, Mengtong
  • Xie, Hui
  • Xu, Xiaoxiao
  • Wu, Shuangying
  • Li, Yourong

Abstract

The low-grade heat sources coupled by ORC (organic Rankine cycle) are categorized into two groups. For the first one, the inlet temperature and the mass flow rate are known, and the working mass of the heat source is directly discharged after being used. For the second, the heat release is specific and the working mass of the heat source is usually recycled after releasing heat. The theoretical formulas of net power output and thermal efficiency for subcritical ORC coupling with the two kinds of heat source are proposed to elucidate the selection criteria of working fluids. The new mathematical relation of working fluid selection is given out. The selection of working fluids for subcritical ORC should couple with the types of low-grade heat sources. For the first heat source, both the theoretical analysis and numerical simulation results show that the working fluids with high liquid specific heat and low latent heat of evaporation should be selected as the working fluids. In contrast, the working fluids with low liquid specific heat and the high latent heat of evaporation are better for the second heat source.

Suggested Citation

  • He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:283-291
    DOI: 10.1016/j.energy.2014.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badr, O. & Probert, S.D. & O'Callaghan, P.W., 1985. "Selecting a working fluid for a Rankine-cycle engine," Applied Energy, Elsevier, vol. 21(1), pages 1-42.
    2. Kuo, Chi-Ron & Hsu, Sung-Wei & Chang, Kai-Han & Wang, Chi-Chuan, 2011. "Analysis of a 50kW organic Rankine cycle system," Energy, Elsevier, vol. 36(10), pages 5877-5885.
    3. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    4. Wang, J.L. & Zhao, L. & Wang, X.D., 2012. "An experimental study on the recuperative low temperature solar Rankine cycle using R245fa," Applied Energy, Elsevier, vol. 94(C), pages 34-40.
    5. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    6. Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
    7. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    8. Baik, Young-Jin & Kim, Minsung & Chang, Ki-Chang & Lee, Young-Soo & Yoon, Hyung-Kee, 2012. "Power enhancement potential of a mixture transcritical cycle for a low-temperature geothermal power generation," Energy, Elsevier, vol. 47(1), pages 70-76.
    9. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    10. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    11. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    12. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    13. Wang, J.L. & Zhao, L. & Wang, X.D., 2010. "A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle," Applied Energy, Elsevier, vol. 87(11), pages 3366-3373, November.
    14. Wang, Z.Q. & Zhou, N.J. & Guo, J. & Wang, X.Y., 2012. "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, Elsevier, vol. 40(1), pages 107-115.
    15. Macián, V. & Serrano, J.R. & Dolz, V. & Sánchez, J., 2013. "Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine," Applied Energy, Elsevier, vol. 104(C), pages 758-771.
    16. Xi, Huan & Li, Ming-Jia & Xu, Chao & He, Ya-Ling, 2013. "Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm," Energy, Elsevier, vol. 58(C), pages 473-482.
    17. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    18. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    19. Chen, Qicheng & Xu, Jinliang & Chen, Hongxia, 2012. "A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source," Applied Energy, Elsevier, vol. 98(C), pages 562-573.
    20. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    21. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    22. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    23. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    24. Marion, Michaël & Voicu, Ionut & Tiffonnet, Anne-Lise, 2012. "Study and optimization of a solar subcritical organic Rankine cycle," Renewable Energy, Elsevier, vol. 48(C), pages 100-109.
    25. He, Ya-Ling & Mei, Dan-Hua & Tao, Wen-Quan & Yang, Wei-Wei & Liu, Huai-Liang, 2012. "Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle," Applied Energy, Elsevier, vol. 97(C), pages 630-641.
    26. Zhang, H.G. & Wang, E.H. & Fan, B.Y., 2013. "A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine," Applied Energy, Elsevier, vol. 102(C), pages 1504-1513.
    27. Borsukiewicz-Gozdur, Aleksandra, 2013. "Exergy analysis for maximizing power of organic Rankine cycle power plant driven by open type energy source," Energy, Elsevier, vol. 62(C), pages 73-81.
    28. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiansheng & Diao, Mengzhen & Yue, Kaihong, 2017. "Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method," Energy, Elsevier, vol. 141(C), pages 97-107.
    2. Chen, Chaofan & Witte, Francesco & Tuschy, Ilja & Kolditz, Olaf & Shao, Haibing, 2022. "Parametric optimization and comparative study of an organic Rankine cycle power plant for two-phase geothermal sources," Energy, Elsevier, vol. 252(C).
    3. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    4. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    5. Yang, Lixiang & Gong, Maoqiong & Guo, Hao & Dong, Xueqiang & Shen, Jun & Wu, Jianfeng, 2016. "Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles," Energy, Elsevier, vol. 109(C), pages 830-844.
    6. Xu, Heng & Gao, Naiping & Zhu, Tong, 2016. "Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle," Energy, Elsevier, vol. 96(C), pages 59-68.
    7. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    8. Zhang, Xinxin & Li, Yang, 2023. "An examination of super dry working fluids used in regenerative organic Rankine cycles," Energy, Elsevier, vol. 263(PD).
    9. Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Wu, Wei & Liang, Yingzong & Chen, Jianyong & Chen, Ying, 2024. "Experimental and simulation study on a zeotropic ORC system using R1234ze(E)/R245fa as working fluid," Energy, Elsevier, vol. 292(C).
    10. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    11. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    12. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    13. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    14. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    15. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    16. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    2. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    3. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    4. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    5. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    6. Zhao, Li & Bao, Junjiang, 2014. "Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures," Applied Energy, Elsevier, vol. 130(C), pages 748-756.
    7. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    8. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    9. Yang, Fubin & Zhang, Hongguang & Song, Songsong & Bei, Chen & Wang, Hongjin & Wang, Enhua, 2015. "Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine," Energy, Elsevier, vol. 93(P2), pages 2208-2228.
    10. Yang, Kai & Zhang, Hongguang & Wang, Zhen & Zhang, Jian & Yang, Fubin & Wang, Enhua & Yao, Baofeng, 2013. "Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions," Energy, Elsevier, vol. 58(C), pages 494-510.
    11. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    12. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    13. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    14. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    15. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    16. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    17. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.
    18. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    19. Ayachi, Fadhel & Boulawz Ksayer, Elias & Zoughaib, Assaad & Neveu, Pierre, 2014. "ORC optimization for medium grade heat recovery," Energy, Elsevier, vol. 68(C), pages 47-56.
    20. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:283-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.