IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp295-314.html
   My bibliography  Save this article

Wastes and biomass materials as sustainable-renewable energy resources for Jordan

Author

Listed:
  • Al-Hamamre, Zayed
  • Saidan, Motasem
  • Hararah, Muhanned
  • Rawajfeh, Khaled
  • Alkhasawneh, Hussam E.
  • Al-Shannag, Mohammad

Abstract

An assessment of biomass resources potential in Jordan for power/heat generation and biogas production is presented in this paper. The investigation is based on five crucial requirements toward process sustainability and production cost. These requirements include biomass analysis and availability, conversion technologies, optimizing efficiency, reduction of environmental impact, and political decisions. All of these requirements collectively work in synergy toward commercial implementation of bioconversion technologies of biomass into energy. The information obtained in this study is expected to be useful for both decentralized and centralized wastes based energy planning by policymakers and industry developers, which can increase the biomass based renewable energy share to the energy mix. Direct biomass resources including agricultural residues, animal manure and municipal solid waste are considered in the analysis. Jordan produces more than 5.83 MT of wastes and residues annually, where 42% of which are estimated as available sources for energy generation and biogas production. The corresponding annual biogas and power potential is 313.14 MCM and 847.39 GWh, respectively. The produced biogas could replace almost 23.64% of Jordan primary energy consumed in the year 2012 in the form of natural gas (656 toe). Amongst all wastes and residues, municipal solid waste generated in the middle region of Jordan has the highest potential for biogas and power generation at 24.26%. This is followed by poultry manure with 18.58% and olive residues with 15.1%. The potential of the other wastes and residues is estimated at 42.06%.

Suggested Citation

  • Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:295-314
    DOI: 10.1016/j.rser.2016.09.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116305305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halder, P.K. & Paul, N. & Beg, M.R.A., 2014. "Assessment of biomass energy resources and related technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 444-460.
    2. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    3. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    4. Gonzalez-Salazar, Miguel Angel & Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro & Finkenrath, Matthias & Poganietz, Witold-Roger, 2014. "Methodology for estimating biomass energy potential and its application to Colombia," Applied Energy, Elsevier, vol. 136(C), pages 781-796.
    5. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    6. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    7. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    8. Omer, Abdeen M., 2005. "Biomass energy potential and future prospect in Sudan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 1-27, February.
    9. Monforti, F. & Bódis, K. & Scarlat, N. & Dallemand, J.-F., 2013. "The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 666-677.
    10. Rofiqul Islam, M. & Rabiul Islam, M. & Rafiqul Alam Beg, M., 2008. "Renewable energy resources and technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 299-343, February.
    11. Kaygusuz, K. & Türker, M.F., 2002. "Biomass energy potential in Turkey," Renewable Energy, Elsevier, vol. 26(4), pages 661-678.
    12. Singh, Jasvinder & Gu, Sai, 2010. "Biomass conversion to energy in India--A critique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1367-1378, June.
    13. Chinnici, Gaetano & D’Amico, Mario & Rizzo, Marcella & Pecorino, Biagio, 2015. "Analysis of biomass availability for energy use in Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1025-1030.
    14. Haberl, Helmut, 2006. "The global socioeconomic energetic metabolism as a sustainability problem," Energy, Elsevier, vol. 31(1), pages 87-99.
    15. Singal, S.K. & Varun, & Singh, R.P., 2007. "Rural electrification of a remote island by renewable energy sources," Renewable Energy, Elsevier, vol. 32(15), pages 2491-2501.
    16. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    17. Karaj, Sh. & Rehl, T. & Leis, H. & Müller, J., 2010. "Analysis of biomass residues potential for electrical energy generation in Albania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 493-499, January.
    18. Yanli, Yang & Peidong, Zhang & Wenlong, Zhang & Yongsheng, Tian & Yonghong, Zheng & Lisheng, Wang, 2010. "Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3050-3058, December.
    19. Abu-Qudais, Mohd & Okasha, Gassan, 1996. "Diesel fuel and olive-cake slurry: Atomization and combustion performance," Applied Energy, Elsevier, vol. 54(4), pages 315-326, August.
    20. Loraima Jaramillo-Nieves & Pablo Del Río, 2010. "Contribution of Renewable Energy Sources to the Sustainable Development of Islands: An Overview of the Literature and a Research Agenda," Sustainability, MDPI, vol. 2(3), pages 1-29, March.
    21. Said, N. & El-Shatoury, S.A. & Díaz, L.F. & Zamorano, M., 2013. "Quantitative appraisal of biomass resources and their energy potential in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 84-91.
    22. M.A. Rosen, 2002. "Energy efficiency and sustainable development," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(1/2), pages 23-34.
    23. Marc A. Rosen, 2009. "Energy Sustainability: A Pragmatic Approach and Illustrations," Sustainability, MDPI, vol. 1(1), pages 1-26, March.
    24. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    25. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    2. Chinnici, Gaetano & D’Amico, Mario & Rizzo, Marcella & Pecorino, Biagio, 2015. "Analysis of biomass availability for energy use in Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1025-1030.
    3. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    4. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    5. Prespa Ymeri & Csaba Gyuricza & Csaba Fogarassy, 2020. "Farmers’ Attitudes Towards the Use of Biomass as Renewable Energy—A Case Study from Southeastern Europe," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    6. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    7. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    8. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    9. Berhanu, Mesfin & Jabasingh, S. Anuradha & Kifile, Zebene, 2017. "Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1035-1045.
    10. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    11. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.
    12. Elum, Z.A. & Momodu, A.S., 2017. "Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 72-80.
    13. Christoforou, Elias & Kylili, Angeliki & Fokaides, Paris A., 2016. "Technical and economical evaluation of olive mills solid waste pellets," Renewable Energy, Elsevier, vol. 96(PA), pages 33-41.
    14. Monirul Islam Miskat & Ashfaq Ahmed & Hemal Chowdhury & Tamal Chowdhury & Piyal Chowdhury & Sadiq M. Sait & Young-Kwon Park, 2020. "Assessing the Theoretical Prospects of Bioethanol Production as a Biofuel from Agricultural Residues in Bangladesh: A Review," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    15. Toklu, E. & Güney, M.S. & IsIk, M. & ComaklI, O. & Kaygusuz, K., 2010. "Energy production, consumption, policies and recent developments in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1172-1186, May.
    16. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    17. Mariusz Tańczuk & Robert Junga & Alicja Kolasa-Więcek & Patrycja Niemiec, 2019. "Assessment of the Energy Potential of Chicken Manure in Poland," Energies, MDPI, vol. 12(7), pages 1-18, April.
    18. Knápek, Jaroslav & Králík, Tomáš & Vávrová, Kamila & Weger, Jan, 2020. "Dynamic biomass potential from agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Karthikeyan Natarajan & Petri Latva-Käyrä & Anas Zyadin & Suresh Chauhan & Harminder Singh & Ari Pappinen & Paavo Pelkonen, 2015. "Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India," Challenges, MDPI, vol. 6(1), pages 1-15, May.
    20. Mosaddek Hossen, Md. & Sazedur Rahman, A.H.M. & Kabir, Afsana Sara & Faruque Hasan, M.M. & Ahmed, Shoeb, 2017. "Systematic assessment of the availability and utilization potential of biomass in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 94-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:295-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.