IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp969-985.html
   My bibliography  Save this article

Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain

Author

Listed:
  • Uris, María
  • Linares, José Ignacio
  • Arenas, Eva

Abstract

A previously developed procedure to evaluate a biomass plant feasibility has been improved, now considering availability and cost of the biomass resources around the plant's location. The plant is an organic Rankine cycle cogeneration facility located in mainland Spain. All the villages over 15.000 inhabitants have been considered as potential locations. Partial load operation is considered as well as cogeneration (CHP) and trigeneration (CCHP) schemes. Biomass calculations were performed using BIORAISE (a free GIS tool) showing that, in all the locations, the available biomass within a 30-km radius is larger than the demand, with an average cost of 10 €/MWh. No subsidies have been considered. In CHP operation, all the locations lead to “high efficiency cogeneration” plants, with the best profitability in medium-severe to severe-winter climate zones. In CCHP mode, only locations in medium-to severe-winter climate zones reach “high efficiency”. This mode is worthwhile in climate zones with mild winters and medium to hot summers. The optimum plant size is found to be smaller in CCHP compared to CHP in all the locations and the biggest plants are situated in climate zones with severe winters. Avoided CO2 emissions reach higher values in CHP mode compared to CCHP.

Suggested Citation

  • Uris, María & Linares, José Ignacio & Arenas, Eva, 2017. "Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain," Energy, Elsevier, vol. 133(C), pages 969-985.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:969-985
    DOI: 10.1016/j.energy.2017.05.160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Briola, Stefano & Gabbrielli, Roberto & Baccioli, Andrea & Fino, Andrea & Bischi, Aldo, 2021. "Thermo-economic analysis of a novel trigeneration cycle enabled by two-phase machines," Energy, Elsevier, vol. 227(C).
    2. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Guo, Jiacheng & Liu, Zhijian & Li, Ying & Wu, Di & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage," Renewable Energy, Elsevier, vol. 182(C), pages 1182-1200.
    4. Xin, Liyong & Liu, Chao & Tan, Luxi & Xu, Xiaoxiao & Li, Qibin & Huo, Erguang & Sun, Kuan, 2021. "Thermal stability and pyrolysis products of HFO-1234yf as an environment-friendly working fluid for Organic Rankine Cycle," Energy, Elsevier, vol. 228(C).
    5. Yuan, Yu & Bai, Zhang & Liu, Qibin & Hu, Wenxin & Zheng, Bo, 2021. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Route of enhancing the operation flexibility," Applied Energy, Elsevier, vol. 301(C).
    6. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    7. Yan Xu & Wenyu Li & Jiahai Yuan, 2017. "Economical Efficiency of Combined Cooling Heating and Power Systems Based on an Enthalpy Method," Energies, MDPI, vol. 10(11), pages 1-16, November.
    8. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    9. Mikielewicz, Jarosław & Ochrymiuk, Tomasz & Cenian, Adam, 2022. "Comparison of traditional with low temperature district heating systems based on organic Rankine cycle," Energy, Elsevier, vol. 245(C).
    10. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Design and operation optimization of organic Rankine cycle coupled trigeneration systems," Energy, Elsevier, vol. 142(C), pages 666-677.
    11. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    12. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    13. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    14. Wang, Z.X. & Li, H.Y. & Zhang, X.F. & Wang, L.W. & Du, S. & Fang, C., 2020. "Performance analysis on a novel micro-scale combined cooling, heating and power (CCHP) system for domestic utilization driven by biomass energy," Renewable Energy, Elsevier, vol. 156(C), pages 1215-1232.
    15. Paredes-Sánchez, J.P. & Míguez, J.L. & Blanco, D. & Rodríguez, M.A. & Collazo, J., 2019. "Assessment of micro-cogeneration network in European mining areas: A prototype system," Energy, Elsevier, vol. 174(C), pages 350-358.
    16. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    17. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    18. Agnieszka Biernat-Jarka & Paulina Trębska & Sławomir Jarka, 2021. "The Role of Renewable Energy Sources in Alleviating Energy Poverty in Households in Poland," Energies, MDPI, vol. 14(10), pages 1-21, May.
    19. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    20. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    21. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    22. Diemuodeke, Ogheneruona E. & Mulugetta, Yacob & Imran, Muhammad, 2021. "Techno-economic and environmental feasibility analysis of rice husks fired energy system for application in a cluster of rice mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    23. Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.
    24. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Parikhani, Towhid, 2022. "Proposal and evaluation of two innovative combined gas turbine and ejector refrigeration cycles fueled by biogas: Thermodynamic and optimization analysis," Renewable Energy, Elsevier, vol. 181(C), pages 749-764.
    25. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:969-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.