IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3499-d266306.html
   My bibliography  Save this article

Energy Demand of Short-Range Inland Ferry with Series Hybrid Propulsion Depending on the Navigation Strategy

Author

Listed:
  • Magdalena Kunicka

    (Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Wojciech Litwin

    (Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

Interest in hybrid propulsion systems that can be used on small vessels has increased significantly in recent years. They can replace inefficient and environmentally burdensome conventional systems based on diesel engines. Hybrid propulsion has many advantages such as high energy efficiency and virtually noiseless operation, and therefore it fits well with the current trends of “green shipping” and “zero emission”. The aim of the research conducted was to examine and analyse the varied energy demand of a small inland ferry with electric propulsion depending on the navigation strategy. The work included tests carried out on a model of the vessel. Conventional resistance tests involving towing the model at a constant speed proved to be of no use for the unit, which, during a short voyage, moves with variable speeds and manoeuvres. Therefore, atypical and unique tests were performed to determine the energy consumption during the acceleration of the unit and the parameters of navigation with the propulsion turned off. The work resulted in calculated forecasts of energy consumption by the ship depending on the adopted cruising style and a proposal of the most energy-efficient way to cross the shipping route connecting the two banks of the Motława River in the city of Gdańsk.

Suggested Citation

  • Magdalena Kunicka & Wojciech Litwin, 2019. "Energy Demand of Short-Range Inland Ferry with Series Hybrid Propulsion Depending on the Navigation Strategy," Energies, MDPI, vol. 12(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3499-:d:266306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Li, Qing & Long, Teng, 2018. "A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship," Energy, Elsevier, vol. 165(PA), pages 965-978.
    2. Jeong, Byongug & Oguz, Elif & Wang, Haibin & Zhou, Peilin, 2018. "Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives," Applied Energy, Elsevier, vol. 230(C), pages 1065-1081.
    3. Derollepot, Romain & Vinot, Emmanuel, 2019. "Sizing of a combined series-parallel hybrid architecture for river ship application using genetic algorithm and optimal energy management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 248-263.
    4. Wojciech Litwin & Wojciech Leśniewski & Daniel Piątek & Karol Niklas, 2019. "Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship," Energies, MDPI, vol. 12(9), pages 1-16, May.
    5. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Koznowski & Andrzej Łebkowski, 2022. "Analysis of Hull Shape Impact on Energy Consumption in an Electric Port Tugboat," Energies, MDPI, vol. 15(1), pages 1-21, January.
    2. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    3. Wojciech Leśniewski & Daniel Piątek & Konrad Marszałkowski & Wojciech Litwin, 2020. "Small Vessel with Inboard Engine Retrofitting Concepts; Real Boat Tests, Laboratory Hybrid Drive Tests and Theoretical Studies," Energies, MDPI, vol. 13(10), pages 1-13, May.
    4. Zbigniew Łosiewicz & Waldemar Mironiuk & Witold Cioch & Ewelina Sendek-Matysiak & Wojciech Homik, 2022. "Application of Generator-Electric Motor System for Emergency Propulsion of a Vessel in the Event of Loss of the Full Serviceability of the Diesel Main Engine," Energies, MDPI, vol. 15(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    2. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    3. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Bagherabadi, Kamyar Maleki & Skjong, Stian & Bruinsma, Jogchum & Pedersen, Eilif, 2023. "Investigation of hybrid power plant configurations for an offshore vessel with co-simulation approach," Applied Energy, Elsevier, vol. 343(C).
    5. Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
    6. Michael E. Stamatakis & Maria G. Ioannides, 2021. "State Transitions Logical Design for Hybrid Energy Generation with Renewable Energy Sources in LNG Ship," Energies, MDPI, vol. 14(22), pages 1-26, November.
    7. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Zbigniew Łosiewicz & Waldemar Mironiuk & Witold Cioch & Ewelina Sendek-Matysiak & Wojciech Homik, 2022. "Application of Generator-Electric Motor System for Emergency Propulsion of a Vessel in the Event of Loss of the Full Serviceability of the Diesel Main Engine," Energies, MDPI, vol. 15(8), pages 1-19, April.
    10. Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.
    11. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    12. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    13. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    14. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    15. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    16. Ansari, Zafar Ayub & Raja, G. Lloyds, 2024. "Enhanced cascaded frequency controller optimized by flow direction algorithm for seaport hybrid microgrid powered by renewable energies," Applied Energy, Elsevier, vol. 374(C).
    17. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    18. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    19. Hao Jin & Xinhang Yang, 2023. "Bilevel Optimal Sizing and Operation Method of Fuel Cell/Battery Hybrid All-Electric Shipboard Microgrid," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    20. Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3499-:d:266306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.