IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1189-d1602226.html
   My bibliography  Save this article

Overview of Hybrid Marine Energy System Configurations and System Component Modeling Approaches

Author

Listed:
  • Gojmir Radica

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

  • Tino Vidović

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

  • Jakov Šimunović

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

  • Zdeslav Jurić

    (Faculty of Maritime Study, University of Split, R. Boškovića 37, 21000 Split, Croatia)

Abstract

This paper aims to highlight the importance of hybrid propulsion technologies in the maritime industry as a key step toward reducing harmful emissions and improving the energy efficiency of the shipping sector. Hybrid systems, through optimized energy management and the combination of diesel engines, batteries, and fuel cells, can reduce fossil fuel consumption and emissions, contributing to decarbonization goals and lowering operating costs for shipowners. Different propulsion and energy architectures are examined, each offering specific advantages and being applied depending on the type of vessel and regulatory requirements. The main components of hybrid marine energy systems are specifically analyzed with their advantages and disadvantages. Special emphasis is placed on modeling hybrid system components, using both physical and data-driven models. Physical models provide accuracy but are more complex, while data-driven models enable fast processing and adaptability but may deviate from real results without high-quality data.

Suggested Citation

  • Gojmir Radica & Tino Vidović & Jakov Šimunović & Zdeslav Jurić, 2025. "Overview of Hybrid Marine Energy System Configurations and System Component Modeling Approaches," Energies, MDPI, vol. 18(5), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1189-:d:1602226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1189/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1189/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tino Vidović & Jakov Šimunović & Gojmir Radica & Željko Penga, 2023. "Systematic Overview of Newly Available Technologies in the Green Maritime Sector," Energies, MDPI, vol. 16(2), pages 1-26, January.
    2. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2012. "Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping," Energy Policy, Elsevier, vol. 40(C), pages 204-218.
    3. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2016. "Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships," Energy, Elsevier, vol. 114(C), pages 444-456.
    4. Ovrum, E. & Bergh, T.F., 2015. "Modelling lithium-ion battery hybrid ship crane operation," Applied Energy, Elsevier, vol. 152(C), pages 162-172.
    5. Giovanni Lucà Trombetta & Salvatore Gianluca Leonardi & Davide Aloisio & Laura Andaloro & Francesco Sergi, 2024. "Lithium-Ion Batteries on Board: A Review on Their Integration for Enabling the Energy Transition in Shipping Industry," Energies, MDPI, vol. 17(5), pages 1-37, February.
    6. Wojciech Litwin & Wojciech Leśniewski & Daniel Piątek & Karol Niklas, 2019. "Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship," Energies, MDPI, vol. 12(9), pages 1-16, May.
    7. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 212(C), pages 919-930.
    8. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    3. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    4. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    5. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    7. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    8. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    9. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    11. Dawei Chen & Wangqiang Niu & Wei Gu & Nigel Schofield, 2019. "Game-Based Energy Management Method for Hybrid RTG Cranes," Energies, MDPI, vol. 12(18), pages 1-23, September.
    12. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    13. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    14. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    15. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    16. Wojciech Litwin & Wojciech Leśniewski & Daniel Piątek & Karol Niklas, 2019. "Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship," Energies, MDPI, vol. 12(9), pages 1-16, May.
    17. Magdalena Kunicka & Wojciech Litwin, 2019. "Energy Demand of Short-Range Inland Ferry with Series Hybrid Propulsion Depending on the Navigation Strategy," Energies, MDPI, vol. 12(18), pages 1-13, September.
    18. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    20. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, vol. 8(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1189-:d:1602226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.