Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Obnamia, Jon Albert & Dias, Goretty M. & MacLean, Heather L. & Saville, Bradley A., 2019. "Comparison of U.S. Midwest corn stover ethanol greenhouse gas emissions from GREET and GHGenius," Applied Energy, Elsevier, vol. 235(C), pages 591-601.
- Mikhail Sofiev & James J. Winebrake & Lasse Johansson & Edward W. Carr & Marje Prank & Joana Soares & Julius Vira & Rostislav Kouznetsov & Jukka-Pekka Jalkanen & James J. Corbett, 2018. "Cleaner fuels for ships provide public health benefits with climate tradeoffs," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
- Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Li, Qing & Long, Teng, 2018. "A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship," Energy, Elsevier, vol. 165(PA), pages 965-978.
- Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.
- Tvinnereim, Endre & Mehling, Michael, 2018. "Carbon pricing and deep decarbonisation," Energy Policy, Elsevier, vol. 121(C), pages 185-189.
- Jianyun, Zhu & Li, Chen & Lijuan, Xia & Bin, Wang, 2019. "Bi-objective optimal design of plug-in hybrid electric propulsion system for ships," Energy, Elsevier, vol. 177(C), pages 247-261.
- Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
- Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
- Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2011. "Reductions in greenhouse gas emissions and cost by shipping at lower speeds," Energy Policy, Elsevier, vol. 39(6), pages 3456-3464, June.
- Haseltalab, Ali & Negenborn, Rudy R., 2019. "Model predictive maneuvering control and energy management for all-electric autonomous ships," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
- Wu, Peng & Partridge, Julius & Bucknall, Richard, 2020. "Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships," Applied Energy, Elsevier, vol. 275(C).
- Jeong, Byongug & Oguz, Elif & Wang, Haibin & Zhou, Peilin, 2018. "Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives," Applied Energy, Elsevier, vol. 230(C), pages 1065-1081.
- Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
- Lindstad, Haakon & Jullumstrø, Egil & Sandaas, Inge, 2013. "Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion," Energy Policy, Elsevier, vol. 59(C), pages 341-349.
- Liu, Hongda & Zhang, Qing & Qi, Xiaoxia & Han, Yang & Lu, Fang, 2017. "Estimation of PV output power in moving and rocking hybrid energy marine ships," Applied Energy, Elsevier, vol. 204(C), pages 362-372.
- Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
- Ritari, Antti & Huotari, Janne & Halme, Jukka & Tammi, Kari, 2020. "Hybrid electric topology for short sea ships with high auxiliary power availability requirement," Energy, Elsevier, vol. 190(C).
- Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
- Pereira, L.G. & Cavalett, O. & Bonomi, A. & Zhang, Y. & Warner, E. & Chum, H.L., 2019. "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 1-12.
- Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
- Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
- Perčić, Maja & Ančić, Ivica & Vladimir, Nikola, 2020. "Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elżbieta Szaruga & Elżbieta Załoga, 2022. "Qualitative–Quantitative Warning Modeling of Energy Consumption Processes in Inland Waterway Freight Transport on River Sections for Environmental Management," Energies, MDPI, vol. 15(13), pages 1-21, June.
- Clara Paola Camargo-Díaz & Edwin Paipa-Sanabria & Julian Andres Zapata-Cortes & Yamileth Aguirre-Restrepo & Edgar Eduardo Quiñones-Bolaños, 2022. "A Review of Economic Incentives to Promote Decarbonization Alternatives in Maritime and Inland Waterway Transport Modes," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
- Zbigniew Łosiewicz & Waldemar Mironiuk & Witold Cioch & Ewelina Sendek-Matysiak & Wojciech Homik, 2022. "Application of Generator-Electric Motor System for Emergency Propulsion of a Vessel in the Event of Loss of the Full Serviceability of the Diesel Main Engine," Energies, MDPI, vol. 15(8), pages 1-19, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
- Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
- Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
- Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Park, Chybyung & Jeong, Byongug & Zhou, Peilin & Jang, Hayoung & Kim, Seongwan & Jeon, Hyeonmin & Nam, Dong & Rashedi, Ahmad, 2022. "Live-Life cycle assessment of the electric propulsion ship using solar PV," Applied Energy, Elsevier, vol. 309(C).
- Perčić, Maja & Ančić, Ivica & Vladimir, Nikola, 2020. "Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
- Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
- Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
- Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.
- Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
- Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
- Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
- Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
- Bagherabadi, Kamyar Maleki & Skjong, Stian & Bruinsma, Jogchum & Pedersen, Eilif, 2023. "Investigation of hybrid power plant configurations for an offshore vessel with co-simulation approach," Applied Energy, Elsevier, vol. 343(C).
More about this item
Keywords
inland waterway transport; LCA; LCCA; emissions; carbon allowance; ship power system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7046-:d:666450. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.