IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1998-d161289.html
   My bibliography  Save this article

Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores

Author

Listed:
  • Chengcheng Liu

    (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
    Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Jiawei Lu

    (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
    Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Youhua Wang

    (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
    Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Gang Lei

    (School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Jianguo Zhu

    (School of Electrical and Information Engineering, University of Sydney, Ultimo, NSW 2007, Australia)

  • Youguang Guo

    (School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

By using global ring winding, the torque coefficient of the transverse flux machine (TFM) is proportional to its number of pole pairs, and thus the TFM possesses high torque density ability when compared with other electrical machines. As a special kind of TFM, the claw pole machine (CPM) can have more torque due to its special claw pole teeth. The manufacturing of CPM or TFM with silicon steels was very difficult in the past, and is a handicap for the progress of this kind of machine. Thanks to the advent of soft magnetic composite (SMC) materials, the manufacturing process of CPM has become more and more simple. More attention has been paid to this kind of technology, and some mass production CPMs with SMC cores have appeared. However, there are few works that discuss the key design issues for this kind of machine. In this paper, a small CPM with SMC is used as as a research benchmark. Various design methods that can be adopted to improve its performance have been studied, including unequal stator claw pole teeth, a skewing magnet design, consequent pole design, and etc. The 3D finite element method (FEM) is used for the machine analysis, and it is verified by the experimental results of a CPM with SMC cores.

Suggested Citation

  • Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1998-:d:161289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    2. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2017. "Techniques for Reduction of the Cogging Torque in Claw Pole Machines with SMC Cores," Energies, MDPI, vol. 10(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    2. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2021. "A Review of Transverse Flux Machines Topologies and Design," Energies, MDPI, vol. 14(21), pages 1-34, November.
    3. Pere Andrada & Balduí Blanqué & Eusebi Martínez & José Ignacio Perat & José Antonio Sánchez & Marcel Torrent, 2019. "Influence of Manufacturing and Assembly Defects and the Quality of Materials on the Performance of an Axial-Flux Switched Reluctance Machine," Energies, MDPI, vol. 12(24), pages 1-12, December.
    4. Muhammad Usman Naseer & Ants Kallaste & Bilal Asad & Toomas Vaimann & Anton Rassõlkin, 2021. "A Review on Additive Manufacturing Possibilities for Electrical Machines," Energies, MDPI, vol. 14(7), pages 1-24, March.
    5. Xin Ba & Zhenjie Gong & Youguang Guo & Chengning Zhang & Jianguo Zhu, 2022. "Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss," Energies, MDPI, vol. 15(6), pages 1-18, March.
    6. Youguang Guo & Xin Ba & Lin Liu & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2023. "A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Reza Zeinali & Ozan Keysan, 2019. "A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    3. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    4. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    5. Md Sydur Rahman & Grace Firsta Lukman & Pham Trung Hieu & Kwang-Il Jeong & Jin-Woo Ahn, 2021. "Optimization and Characteristics Analysis of High Torque Density 12/8 Switched Reluctance Motor Using Metaheuristic Gray Wolf Optimization Algorithm," Energies, MDPI, vol. 14(7), pages 1-17, April.
    6. Haipeng Liu & Xin Jin & Nicola Bianchi & Gerd Bramerdorfer & Pengzhong Hu & Chengning Zhang & Yongxi Yang, 2022. "A Permanent Magnet Assembling Approach to Mitigate the Cogging Torque for Permanent Magnet Machines Considering Manufacturing Uncertainties," Energies, MDPI, vol. 15(6), pages 1-19, March.
    7. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    8. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    9. Sajjad Ahmadi & Thierry Lubin & Abolfazl Vahedi & Nasser Taghavi, 2021. "Sensitivity-Based Optimization of Interior Permanent Magnet Synchronous Motor for Torque Characteristic Enhancement," Energies, MDPI, vol. 14(8), pages 1-15, April.
    10. Xueping Xu & Qinkai Han & Fulei Chu, 2018. "Review of Electromagnetic Vibration in Electrical Machines," Energies, MDPI, vol. 11(7), pages 1-33, July.
    11. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    12. Chengcheng Liu & Gang Lei & Bo Ma & Youguang Guo & Jianguo Zhu, 2018. "Robust Design of a Low-Cost Permanent Magnet Motor with Soft Magnetic Composite Cores Considering the Manufacturing Process and Tolerances," Energies, MDPI, vol. 11(8), pages 1-17, August.
    13. Niklas Umland & Kora Winkler & David Inkermann, 2023. "Multidisciplinary Design Automation of Electric Motors—Systematic Literature Review and Methodological Framework," Energies, MDPI, vol. 16(20), pages 1-39, October.
    14. Noman Ullah & Abdul Basit & Faisal Khan & Wasiq Ullah & Mohsin Shahzad & Atif Zahid, 2018. "Enhancing Capabilities of Double Sided Linear Flux Switching Permanent Magnet Machines," Energies, MDPI, vol. 11(10), pages 1-21, October.
    15. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    16. Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
    17. Xiushan Wu & Can Li & Sian Sun & Renyuan Tong & Qing Li, 2019. "A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder," Energies, MDPI, vol. 12(18), pages 1-17, September.
    18. Miguel García-Gracia & Ángel Jiménez Romero & Jorge Herrero Ciudad & Susana Martín Arroyo, 2018. "Cogging Torque Reduction Based on a New Pre-Slot Technique for a Small Wind Generator," Energies, MDPI, vol. 11(11), pages 1-15, November.
    19. Hongye Zhang & Zezhao Wen & Francesco Grilli & Konstantinos Gyftakis & Markus Mueller, 2021. "Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines," Energies, MDPI, vol. 14(8), pages 1-39, April.
    20. Mbika Muteba, 2021. "Optimization of Air Gap Length and Capacitive Auxiliary Winding in Three-Phase Induction Motors Based on a Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1998-:d:161289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.