IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3416-d264178.html
   My bibliography  Save this article

A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder

Author

Listed:
  • Xiushan Wu

    (School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Can Li

    (College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China)

  • Sian Sun

    (School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Renyuan Tong

    (College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China)

  • Qing Li

    (College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract

A novel induction heating coil is proposed and designed as a shrink-fit tool holder. An electromagnetic field analysis of the coil with different winding methods is conducted using the ANSYS finite element analysis software and an appropriate coil structure is determined, based on the simulated electromagnetic field distribution cloud maps. The magnetic field in the X–Y plane is increased by one order of magnitude around the surface with the addition of the designed magnetic slot, as well as improving the magnetic leakage. The electromagnetic field strength in the middle of the coil is greatly increased, up to 2.312 × 10 4 A/m, by the addition of a designed magnetic ring covering the top of the coil. The distribution of the three-dimensional temperature field is obtained by the ANSYS workbench transient thermal analysis software, based on the selected coil. Hot-loading equipment used for shrink-fit tool holders are implemented with diameter-selection, power, and heating time-setting functions. Experiments on different types of tool holders are carried out to obtain optimal heating parameters and to verify the reliability of the implemented heating equipment. Through experimental testing, the inserting and pulling out temperature is found to be about 270 °C for the BT40-SF06 and about 285 °C for the BT40-SF10. According to the experimental results, the simulated temperature field is in good agreement with the measured result. The optimal heating parameters of the heating equipment are determined, which proves the correctness of the heating method of the shrink-fit tool holder.

Suggested Citation

  • Xiushan Wu & Can Li & Sian Sun & Renyuan Tong & Qing Li, 2019. "A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder," Energies, MDPI, vol. 12(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3416-:d:264178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yubai Li & Hongbin Yan & Mehrdad Massoudi & Wei-Tao Wu, 2017. "Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field," Energies, MDPI, vol. 10(7), pages 1-19, July.
    2. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    3. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    4. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    5. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    6. Md Sydur Rahman & Grace Firsta Lukman & Pham Trung Hieu & Kwang-Il Jeong & Jin-Woo Ahn, 2021. "Optimization and Characteristics Analysis of High Torque Density 12/8 Switched Reluctance Motor Using Metaheuristic Gray Wolf Optimization Algorithm," Energies, MDPI, vol. 14(7), pages 1-17, April.
    7. Haipeng Liu & Xin Jin & Nicola Bianchi & Gerd Bramerdorfer & Pengzhong Hu & Chengning Zhang & Yongxi Yang, 2022. "A Permanent Magnet Assembling Approach to Mitigate the Cogging Torque for Permanent Magnet Machines Considering Manufacturing Uncertainties," Energies, MDPI, vol. 15(6), pages 1-19, March.
    8. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    9. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    10. Sajjad Ahmadi & Thierry Lubin & Abolfazl Vahedi & Nasser Taghavi, 2021. "Sensitivity-Based Optimization of Interior Permanent Magnet Synchronous Motor for Torque Characteristic Enhancement," Energies, MDPI, vol. 14(8), pages 1-15, April.
    11. Xueping Xu & Qinkai Han & Fulei Chu, 2018. "Review of Electromagnetic Vibration in Electrical Machines," Energies, MDPI, vol. 11(7), pages 1-33, July.
    12. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    13. Chengcheng Liu & Gang Lei & Bo Ma & Youguang Guo & Jianguo Zhu, 2018. "Robust Design of a Low-Cost Permanent Magnet Motor with Soft Magnetic Composite Cores Considering the Manufacturing Process and Tolerances," Energies, MDPI, vol. 11(8), pages 1-17, August.
    14. Niklas Umland & Kora Winkler & David Inkermann, 2023. "Multidisciplinary Design Automation of Electric Motors—Systematic Literature Review and Methodological Framework," Energies, MDPI, vol. 16(20), pages 1-39, October.
    15. Noman Ullah & Abdul Basit & Faisal Khan & Wasiq Ullah & Mohsin Shahzad & Atif Zahid, 2018. "Enhancing Capabilities of Double Sided Linear Flux Switching Permanent Magnet Machines," Energies, MDPI, vol. 11(10), pages 1-21, October.
    16. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    17. Rahul R. Kumar & Mauro Andriollo & Giansalvo Cirrincione & Maurizio Cirrincione & Andrea Tortella, 2022. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors," Energies, MDPI, vol. 15(23), pages 1-36, November.
    18. Hongye Zhang & Zezhao Wen & Francesco Grilli & Konstantinos Gyftakis & Markus Mueller, 2021. "Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines," Energies, MDPI, vol. 14(8), pages 1-39, April.
    19. A. J. Chamkha & A. M. Rashad & E. R. EL-Zahar & Hamed A. EL-Mky, 2019. "Analytical and Numerical Investigation of Fe 3 O 4 –Water Nanofluid Flow over a Moveable Plane in a Parallel Stream with High Suction," Energies, MDPI, vol. 12(1), pages 1-18, January.
    20. Mbika Muteba, 2021. "Optimization of Air Gap Length and Capacitive Auxiliary Winding in Three-Phase Induction Motors Based on a Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3416-:d:264178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.