IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3326-d569634.html
   My bibliography  Save this article

Method of Limiting Shaft Voltages in AC Electric Machines

Author

Listed:
  • Sebastian Berhausen

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Tomasz Jarek

    (Łukasiewicz Research Network—Institute of Electrical Drives and Machines KOMEL, 40-203 Katowice, Poland)

Abstract

The article presents a new method of counteracting shaft voltages and currents in AC electrical machines. It is based on the use of an auxiliary winding located in the stator of the machine. The design of a test stand adapted to the measurement of shaft voltages of the machine, based on the prototype of a synchronous machine with permanent magnets, has been presented. The model was used to conduct a number of laboratory tests aimed at confirming the functionality of the auxiliary winding in various operating states of the machine (including no-load and load condition during generator operation). The article focuses on demonstrating the beneficial effect of the auxiliary winding on the level of induced shaft voltages in an electric machine. In order to confirm the close dependence of the circular flux in the stator yoke on the shaft voltage, shaft voltage measurement results for various cases of external power supply of auxiliary winding forcing a circular flux are presented. Regardless of the laboratory tests, a simulation model of a synchronous machine with permanent magnets, on which calculations were carried out to analyze the work of the auxiliary winding located in the stator yoke, was developed. The article is supplemented by a review of damage to electrical machines with a detailed description of bearing defects, as well as a brief de-scription of issues related to the mechanism of generating shaft voltages and currents in electrical machines and methods of counteracting them.

Suggested Citation

  • Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3326-:d:569634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Cheng & Le Sun & Giuseppe Buja & Lihua Song, 2015. "Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles," Energies, MDPI, vol. 8(9), pages 1-24, September.
    2. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    3. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez, 2017. "State of the Art and Trends in the Monitoring, Detection and Diagnosis of Failures in Electric Induction Motors," Energies, MDPI, vol. 10(7), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    2. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    3. Lei Yang & Ying Yang & Junfu Wen & Lei Jia & Erle Yang & Ruifang Liu, 2022. "Suppression of Rotor-Grounding Bearing Currents Based on Matching Stator and Rotor Grounding Impedances," Energies, MDPI, vol. 15(5), pages 1-13, February.
    4. Sebastian Berhausen & Stefan Paszek, 2021. "Determination of the Leakage Reactance of End Windings of a High-Power Synchronous Generator Stator Winding Using the Finite Element Method," Energies, MDPI, vol. 14(21), pages 1-15, October.
    5. Sebastian Berhausen & Tomasz Jarek & Petr Orság, 2022. "Influence of the Shielding Winding on the Bearing Voltage in a Permanent Magnet Synchronous Machine," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongye Zhang & Zezhao Wen & Francesco Grilli & Konstantinos Gyftakis & Markus Mueller, 2021. "Alternating Current Loss of Superconductors Applied to Superconducting Electrical Machines," Energies, MDPI, vol. 14(8), pages 1-39, April.
    2. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    3. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    4. Ahmed Chaibet & Moussa Boukhnifer & Nadir Ouddah & Eric Monmasson, 2020. "Experimental Sensorless Control of Switched Reluctance Motor for Electrical Powertrain System," Energies, MDPI, vol. 13(12), pages 1-15, June.
    5. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.
    6. Feng Yu & Ming Cheng & Kwok Tong Chau & Feng Li, 2015. "Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles," Energies, MDPI, vol. 8(9), pages 1-19, September.
    7. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    8. Md Sydur Rahman & Grace Firsta Lukman & Pham Trung Hieu & Kwang-Il Jeong & Jin-Woo Ahn, 2021. "Optimization and Characteristics Analysis of High Torque Density 12/8 Switched Reluctance Motor Using Metaheuristic Gray Wolf Optimization Algorithm," Energies, MDPI, vol. 14(7), pages 1-17, April.
    9. Xiaoyuan Wang & Haiying Lv & Qiang Sun & Yanqing Mi & Peng Gao, 2017. "A Proportional Resonant Control Strategy for Efficiency Improvement in Extended Range Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.
    10. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    11. Rui Tu & Hui Yang & Heyun Lin & Hanlin Zhan & Di Wu & Minghu Yu & Liang Chen & Wenjie Chen, 2022. "Investigation of a Novel Consequent-Pole Flux-Intensifying Memory Machine," Energies, MDPI, vol. 15(15), pages 1-15, July.
    12. Haipeng Liu & Xin Jin & Nicola Bianchi & Gerd Bramerdorfer & Pengzhong Hu & Chengning Zhang & Yongxi Yang, 2022. "A Permanent Magnet Assembling Approach to Mitigate the Cogging Torque for Permanent Magnet Machines Considering Manufacturing Uncertainties," Energies, MDPI, vol. 15(6), pages 1-19, March.
    13. Changhong Jiang & Qiming Wang & Niaona Zhang & Haitao Ding, 2022. "Overcurrent Protection and Unmatched Disturbance Rejection under Non-Cascade Structure for PMSM," Energies, MDPI, vol. 15(18), pages 1-11, September.
    14. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    15. Yuanxi Chen & Weinong Fu & Shuangxia Niu & Sigao Wang, 2023. "A Torque-Enhanced Magnetic-Geared Machine with Dual-Series-Winding and Its Design Approach for Electric Vehicle Powertrain," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    16. Jingxia Wang & Yusheng Hu & Ming Cheng & Biao Li & Bin Chen, 2020. "Bidirectional Coupling Model of Electromagnetic Field and Thermal Field Applied to the Thermal Analysis of the FSPM Machine," Energies, MDPI, vol. 13(12), pages 1-15, June.
    17. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    18. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    19. Sajjad Ahmadi & Thierry Lubin & Abolfazl Vahedi & Nasser Taghavi, 2021. "Sensitivity-Based Optimization of Interior Permanent Magnet Synchronous Motor for Torque Characteristic Enhancement," Energies, MDPI, vol. 14(8), pages 1-15, April.
    20. Xueping Xu & Qinkai Han & Fulei Chu, 2018. "Review of Electromagnetic Vibration in Electrical Machines," Energies, MDPI, vol. 11(7), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3326-:d:569634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.