Fault Location Method for DC Distribution Systems Based on Parameter Identification
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shi-Min Xue & Chong Liu, 2018. "Line-to-Line Fault Analysis and Location in a VSC-Based Low-Voltage DC Distribution Network," Energies, MDPI, vol. 11(3), pages 1-16, March.
- Seung-Woon Lee & Bo-Hyung Cho, 2016. "Master–Slave Based Hierarchical Control for a Small Power DC-Distributed Microgrid System with a Storage Device," Energies, MDPI, vol. 9(11), pages 1-14, October.
- Shuo Zhang & Guibin Zou & Qiang Huang & Houlei Gao, 2018. "A Traveling-Wave-Based Fault Location Scheme for MMC-Based Multi-Terminal DC Grids," Energies, MDPI, vol. 11(2), pages 1-15, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lu Qu & Zhanqing Yu & Xiang Xiao & Wei Zhao & Yulong Huang & Rong Zeng, 2019. "Development and Application of a 10 kV Mechanical DC Circuit Breaker," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Ting Wang & Liliuyuan Liang & Xinrang Feng & Ferdinanda Ponci & Antonello Monti, 2021. "Online Parameter Estimation for Fault Identification in Multi-Terminal DC Distribution Grids," Energies, MDPI, vol. 14(18), pages 1-15, September.
- Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.
- Yan Xu & Ziqi Hu & Tianxiang Ma, 2022. "Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest," Energies, MDPI, vol. 15(19), pages 1-23, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu Zeng & Guibin Zou & Xiuyan Wei & Chenjun Sun & Lingtong Jiang, 2018. "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-MVDC Distribution Grid," Energies, MDPI, vol. 11(8), pages 1-17, August.
- Susana Martín Arroyo & Miguel García-Gracia & Antonio Montañés, 2019. "The Half-Sine Method: A New Accurate Location Method Based on Wavelet Transform for Transmission-Line Protection from Single-Ended Measurements," Energies, MDPI, vol. 12(17), pages 1-15, August.
- Xiangyu Pei & Guangfu Tang & Shengmei Zhang, 2018. "A Novel Pilot Protection Principle Based on Modulus Traveling-Wave Currents for Voltage-Sourced Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(9), pages 1-20, September.
- Huiyong Hu & Xiaoming Wang & Yonggang Peng & Yanghong Xia & Miao Yu & Wei Wei, 2017. "Stability Analysis and Stability Enhancement Based on Virtual Harmonic Resistance for Meshed DC Distributed Power Systems with Constant Power Loads," Energies, MDPI, vol. 10(1), pages 1-15, January.
- Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Saeed Zaman Jamali & Syed Basit Ali Bukhari & Muhammad Omer Khan & Muhammad Mehdi & Chul-Ho Noh & Gi-Hyeon Gwon & Chul-Hwan Kim, 2018. "Protection Scheme of a Last Mile Active LVDC Distribution Network with Reclosing Option," Energies, MDPI, vol. 11(5), pages 1-20, April.
- Rizwan Tariq & Ibrahim Alhamrouni & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Nivin A. Ghamry & Habib Hamam, 2022. "An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves," Energies, MDPI, vol. 15(17), pages 1-19, September.
- Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
- Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.
- Yan Xu & Ziqi Hu & Tianxiang Ma, 2022. "Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest," Energies, MDPI, vol. 15(19), pages 1-23, October.
- Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.
- Yoon-Geol Choi & Hyeon-Seok Lee & Bongkoo Kang & Su-Chang Lee & Sang-Jin Yoon, 2019. "Compact Single-Stage Micro-Inverter with Advanced Control Schemes for Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-15, March.
- Waqas Javed & Dong Chen & Mohamed Emad Farrag & Yan Xu, 2019. "System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections," Energies, MDPI, vol. 12(6), pages 1-30, March.
- Zhen Tang & Guoxing Mu & Jie Pan & Zhiwei Xue & Hong Yang & Mingyang Mei & Zhihao Zhang & Peng Kou, 2023. "Dynamic Equivalent Model Considering Multiple Induction Motors for System Frequency Response," Energies, MDPI, vol. 16(7), pages 1-23, March.
- Yi Ning & Dazhi Wang & Yunlu Li & Haixin Zhang, 2018. "Location of Faulty Section and Faults in Hybrid Multi-Terminal Lines Based on Traveling Wave Methods," Energies, MDPI, vol. 11(5), pages 1-18, May.
- Giuseppe Barone & Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Michele Motta & Nicola Sorrentino & Pasquale Vizza, 2018. "A Real-Life Application of a Smart User Network," Energies, MDPI, vol. 11(12), pages 1-23, December.
- Saeed Zaman Jamali & Syed Basit Ali Bukhari & Muhammad Omer Khan & Khawaja Khalid Mehmood & Muhammad Mehdi & Chul-Ho Noh & Chul-Hwan Kim, 2018. "A High-Speed Fault Detection, Identification, and Isolation Method for a Last Mile Radial LVDC Distribution Network," Energies, MDPI, vol. 11(11), pages 1-19, October.
- Mingxuan Chen & Suliang Ma & Haiyong Wan & Jianwen Wu & Yuan Jiang, 2018. "Distributed Control Strategy for DC Microgrids of Photovoltaic Energy Storage Systems in Off-Grid Operation," Energies, MDPI, vol. 11(10), pages 1-19, October.
- Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
- Siyuan Liang & Yuejin Tang & Li Ren & Ying Xu & Jing Shi & Zheng Li & Xiangyu Tan, 2019. "Parameter Matching and Optimization of a Hybrid Type DC SFCL Considering the Transient Characteristics of VSC-Based DC Systems," Energies, MDPI, vol. 12(18), pages 1-32, September.
More about this item
Keywords
fault location; DC distribution system; fault type identification; parameter identification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1983-:d:160905. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.