IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p401-d131014.html
   My bibliography  Save this article

A Traveling-Wave-Based Fault Location Scheme for MMC-Based Multi-Terminal DC Grids

Author

Listed:
  • Shuo Zhang

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250000, China)

  • Guibin Zou

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250000, China)

  • Qiang Huang

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250000, China)

  • Houlei Gao

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250000, China)

Abstract

This paper presents a novel fault location scheme of DC line in modular multilevel converter (MMC)-based multi-terminal DC (MTDC) grids. Considering the low-inertia characteristics and the meshed topology, the scheme, based on traveling-wave principle, is divided into three steps, namely, faulty pole identification, faulty segment determination and fault-distance calculation. With accurate amplitude, polarities and arrival times of the first arrival current traveling waves (FACTWs) collected from time-synchronized measurements taken just at the converter stations, the proposed scheme can correctly determine the faulty pole, the faulty segment and the precise fault location. The continuous wavelet transform (CWT) is deployed to extract the required features of the input signals at the DC lines. Since the scheme merely needs the features of FACTWs, the practical difficulties of detecting subsequent traveling waves are avoided. A four-terminal MMC-based high voltage direct current (HVDC) grid was built in PSCAD/EMTDC software to evaluate the performance of the fault-location scheme. Simulation results for different cases demonstrate that the proposed fault-location scheme has high accuracy, good adaptability and reliability. Furthermore, the algorithm can be used for a MMC-MTDC grid with any number of meshes.

Suggested Citation

  • Shuo Zhang & Guibin Zou & Qiang Huang & Houlei Gao, 2018. "A Traveling-Wave-Based Fault Location Scheme for MMC-Based Multi-Terminal DC Grids," Energies, MDPI, vol. 11(2), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:401-:d:131014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/401/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susana Martín Arroyo & Miguel García-Gracia & Antonio Montañés, 2019. "The Half-Sine Method: A New Accurate Location Method Based on Wavelet Transform for Transmission-Line Protection from Single-Ended Measurements," Energies, MDPI, vol. 12(17), pages 1-15, August.
    2. Yan Xu & Jingyan Liu & Weijia Jin & Yuan Fu & Hui Yang, 2018. "Fault Location Method for DC Distribution Systems Based on Parameter Identification," Energies, MDPI, vol. 11(8), pages 1-18, July.
    3. Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.
    4. Yu Zeng & Guibin Zou & Xiuyan Wei & Chenjun Sun & Lingtong Jiang, 2018. "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-MVDC Distribution Grid," Energies, MDPI, vol. 11(8), pages 1-17, August.
    5. Xiangyu Pei & Guangfu Tang & Shengmei Zhang, 2018. "A Novel Pilot Protection Principle Based on Modulus Traveling-Wave Currents for Voltage-Sourced Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(9), pages 1-20, September.
    6. Yi Ning & Dazhi Wang & Yunlu Li & Haixin Zhang, 2018. "Location of Faulty Section and Faults in Hybrid Multi-Terminal Lines Based on Traveling Wave Methods," Energies, MDPI, vol. 11(5), pages 1-18, May.
    7. Rizwan Tariq & Ibrahim Alhamrouni & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Nivin A. Ghamry & Habib Hamam, 2022. "An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves," Energies, MDPI, vol. 15(17), pages 1-19, September.
    8. Yan Xu & Ziqi Hu & Tianxiang Ma, 2022. "Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest," Energies, MDPI, vol. 15(19), pages 1-23, October.
    9. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    10. Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:401-:d:131014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.