IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1234-d218641.html
   My bibliography  Save this article

Compact Single-Stage Micro-Inverter with Advanced Control Schemes for Photovoltaic Systems

Author

Listed:
  • Yoon-Geol Choi

    (Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea)

  • Hyeon-Seok Lee

    (Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea)

  • Bongkoo Kang

    (Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea)

  • Su-Chang Lee

    (LG Electronics Co., Ltd., Energy Business Center, Gumi 39368, Korea)

  • Sang-Jin Yoon

    (Department of Electrical Engineering, Korea Polytechnics, Gumi 39257, Korea)

Abstract

This paper proposes a grid-connected single-stage micro-inverter with low cost, small size, and high efficiency to drive a 320 W class photovoltaic panel. This micro-inverter has a new and advanced topology that consists of an interleaved boost converter, a full-bridge converter, and a voltage doubler. Variable switching frequency and advanced burst control schemes were devised and implemented. A 320 W prototype micro-inverter was very compact and slim with 60-mm width, 310-mm length, and 30-mm height. In evaluations, the proposed micro-inverter achieved CEC weighted efficiency of 95.55%, MPPT efficiency >95% over the entire load range, and THD 2.65% at the rated power. The proposed micro-inverter is well suited for photovoltaic micro-inverter applications that require low cost, small size, high efficiency, and low noise.

Suggested Citation

  • Yoon-Geol Choi & Hyeon-Seok Lee & Bongkoo Kang & Su-Chang Lee & Sang-Jin Yoon, 2019. "Compact Single-Stage Micro-Inverter with Advanced Control Schemes for Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1234-:d:218641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    2. Seung-Woon Lee & Bo-Hyung Cho, 2016. "Master–Slave Based Hierarchical Control for a Small Power DC-Distributed Microgrid System with a Storage Device," Energies, MDPI, vol. 9(11), pages 1-14, October.
    3. Hae-Gwang Jeong & Gwang-Seob Kim & Kyo-Beum Lee, 2013. "Second-Order Harmonic Reduction Technique for Photovoltaic Power Conditioning Systems Using a Proportional-Resonant Controller," Energies, MDPI, vol. 6(1), pages 1-18, January.
    4. Hua Han & Chao Luo & Xiaochao Hou & Mei Su & Wenbin Yuan & Zhangjie Liu & Josep M. Guerrero, 2018. "A Cost-Effective Decentralized Control for AC-Stacked Photovoltaic Inverters," Energies, MDPI, vol. 11(9), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis A. M. Barros & Mohamed Tanta & Tiago J. C. Sousa & Joao L. Afonso & J. G. Pinto, 2020. "New Multifunctional Isolated Microinverter with Integrated Energy Storage System for PV Applications," Energies, MDPI, vol. 13(15), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    2. Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
    3. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    4. Yan Xu & Jingyan Liu & Weijia Jin & Yuan Fu & Hui Yang, 2018. "Fault Location Method for DC Distribution Systems Based on Parameter Identification," Energies, MDPI, vol. 11(8), pages 1-18, July.
    5. Huiyong Hu & Xiaoming Wang & Yonggang Peng & Yanghong Xia & Miao Yu & Wei Wei, 2017. "Stability Analysis and Stability Enhancement Based on Virtual Harmonic Resistance for Meshed DC Distributed Power Systems with Constant Power Loads," Energies, MDPI, vol. 10(1), pages 1-15, January.
    6. Fan Xie & Zhenxiong Luo & Dongyuan Qiu & Bo Zhang & Yanfeng Chen & Liying Huang, 2019. "Study on a Simplified Structure of a Two-Stage Grid-Connected Photovoltaic System for Parameter Design Optimization," Energies, MDPI, vol. 12(11), pages 1-16, June.
    7. Bingzhang Li & Shenghua Huang & Xi Chen, 2017. "Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller," Energies, MDPI, vol. 10(3), pages 1-30, March.
    8. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    9. Abdelali El Aroudi & Mohamed Al-Numay & Germain Garcia & Khalifa Al Hossani & Naji Al Sayari & Angel Cid-Pastor, 2018. "Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System," Energies, MDPI, vol. 12(1), pages 1-23, December.
    10. Angelo Lunardi & Luís F. Normandia Lourenço & Enkhtsetseg Munkhchuluun & Lasantha Meegahapola & Alfeu J. Sguarezi Filho, 2022. "Grid-Connected Power Converters: An Overview of Control Strategies for Renewable Energy," Energies, MDPI, vol. 15(11), pages 1-33, June.
    11. Jin-Hyuk Park & Hae-Gwang Jeong & Kyo-Beum Lee, 2013. "Output Current Ripple Reduction Algorithms for Home Energy Storage Systems," Energies, MDPI, vol. 6(10), pages 1-18, October.
    12. Mohamed A. Hassan & Muhammed Y. Worku & Mohamed A. Abido, 2019. "Optimal Power Control of Inverter-Based Distributed Generations in Grid-Connected Microgrid," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
    13. Wilfried van Sark, 2019. "Photovoltaic System Design and Performance," Energies, MDPI, vol. 12(10), pages 1-6, May.
    14. Mi Dong & Xiaoyu Tian & Li Li & Dongran Song & Lina Wang & Miao Zhao, 2018. "Model-Based Current Sharing Approach for DCM Interleaved Flyback Micro-Inverter," Energies, MDPI, vol. 11(7), pages 1-21, June.
    15. Giuseppe Barone & Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Michele Motta & Nicola Sorrentino & Pasquale Vizza, 2018. "A Real-Life Application of a Smart User Network," Energies, MDPI, vol. 11(12), pages 1-23, December.
    16. Luís F. N. Lourenço & Renato M. Monaro & Maurício B. C. Salles & José R. Cardoso & Loïc Quéval, 2018. "Evaluation of the Reactive Power Support Capability and Associated Technical Costs of Photovoltaic Farms’ Operation," Energies, MDPI, vol. 11(6), pages 1-19, June.
    17. Ki-Ryong Kim & Chang-Yeol Oh & Tae-Jin Kim & Jong-Pil Lee & Hee-Je Kim, 2018. "Implementation of a Smart Power Conditioning System for Energy Storage System with a Novel Seamless Transfer Strategy," Energies, MDPI, vol. 11(5), pages 1-17, May.
    18. Mingxuan Chen & Suliang Ma & Haiyong Wan & Jianwen Wu & Yuan Jiang, 2018. "Distributed Control Strategy for DC Microgrids of Photovoltaic Energy Storage Systems in Off-Grid Operation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    19. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "High Frequency Dual-Buck Full-Bridge Inverter Utilizing a Dual-Core MCU and Parallel Algorithm for Renewable Energy Applications," Energies, MDPI, vol. 10(3), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1234-:d:218641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.