IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2021-d161796.html
   My bibliography  Save this article

Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines

Author

Listed:
  • Lingtong Jiang

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, Shandong, China)

  • Qing Chen

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, Shandong, China)

  • Wudi Huang

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, Shandong, China)

  • Lei Wang

    (Weifang Electric Power Company, Weifang 261000, Shandong, China)

  • Yu Zeng

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, Shandong, China)

  • Pu Zhao

    (Jinan Electric Power Company, Jinan 250061, Shandong, China)

Abstract

This paper presents a novel pilot protection scheme of DC cable line in voltage-source-converter (VSC) based multi-terminal DC (MTDC) grids, which utilizes a novel phase-mode transformation to decouple the bipolar DC cable current into six mode and it uses the stationary wavelet transform to extract the modulus maxima of fault initial traveling waves current (FITWC). With accurate amplitude and polarities of the FITWC being collected from the fault-detection devices located at each terminal, the proposed scheme can correctly determine the faulty segment and the faulty pole. In this paper, the ratio of amplitudes between sixth mode forward and backward travelling wave currents is used to judge the faulty segment and the polarity of fifth mode forward travelling wave current is used to identify the faulty pole. A four-terminal VSC-based MTDC grid was built in PSCAD/EMTDC to evaluate the performance of the fault-protection scheme. Simulation results for different cases demonstrate that the proposed protection scheme is robust against noise, and has been tested successfully for fault resistance of up to 400 Ω. Since the scheme merely needs the characteristics of FITWCs, the practical difficulties of detecting subsequent travelling waves are avoided. Moreover, only the state signal is needed to send to the other side in proposed scheme, so low communication speed can satisfy the requirement of relay protection and it does not need the data synchronization seriously.

Suggested Citation

  • Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2021-:d:161796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pu Zhao & Qing Chen & Kongming Sun & Chuanxin Xi, 2017. "A Current Frequency Component-Based Fault-Location Method for Voltage-Source Converter-Based High-Voltage Direct Current (VSC-HVDC) Cables Using the S Transform," Energies, MDPI, vol. 10(8), pages 1-15, July.
    2. Yun Yang & Chengxiong Mao & Dan Wang & Jie Tian & Ming Yang, 2017. "Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer," Energies, MDPI, vol. 10(9), pages 1-16, September.
    3. Shuo Zhang & Guibin Zou & Qiang Huang & Houlei Gao, 2018. "A Traveling-Wave-Based Fault Location Scheme for MMC-Based Multi-Terminal DC Grids," Energies, MDPI, vol. 11(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Radwan & Sahar Pirooz Azad, 2022. "Protection of Multi-Terminal HVDC Grids: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-37, December.
    2. Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.
    3. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zeng & Guibin Zou & Xiuyan Wei & Chenjun Sun & Lingtong Jiang, 2018. "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-MVDC Distribution Grid," Energies, MDPI, vol. 11(8), pages 1-17, August.
    2. Susana Martín Arroyo & Miguel García-Gracia & Antonio Montañés, 2019. "The Half-Sine Method: A New Accurate Location Method Based on Wavelet Transform for Transmission-Line Protection from Single-Ended Measurements," Energies, MDPI, vol. 12(17), pages 1-15, August.
    3. Xiangyu Pei & Guangfu Tang & Shengmei Zhang, 2018. "A Novel Pilot Protection Principle Based on Modulus Traveling-Wave Currents for Voltage-Sourced Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(9), pages 1-20, September.
    4. Yan Xu & Jingyan Liu & Weijia Jin & Yuan Fu & Hui Yang, 2018. "Fault Location Method for DC Distribution Systems Based on Parameter Identification," Energies, MDPI, vol. 11(8), pages 1-18, July.
    5. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    6. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    7. Rui Liang & Zhi Yang & Nan Peng & Chenglei Liu & Firuz Zare, 2017. "Asynchronous Fault Location in Transmission Lines Considering Accurate Variation of the Ground-Mode Traveling Wave Velocity," Energies, MDPI, vol. 10(12), pages 1-18, November.
    8. Rizwan Tariq & Ibrahim Alhamrouni & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Nivin A. Ghamry & Habib Hamam, 2022. "An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves," Energies, MDPI, vol. 15(17), pages 1-19, September.
    9. Yan Xu & Ziqi Hu & Tianxiang Ma, 2022. "Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest," Energies, MDPI, vol. 15(19), pages 1-23, October.
    10. Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.
    11. Umashankar Subramaniam & Sagar Mahajan Bhaskar & Dhafer J.Almakhles & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage," Energies, MDPI, vol. 12(17), pages 1-18, September.
    12. Yi Ning & Dazhi Wang & Yunlu Li & Haixin Zhang, 2018. "Location of Faulty Section and Faults in Hybrid Multi-Terminal Lines Based on Traveling Wave Methods," Energies, MDPI, vol. 11(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2021-:d:161796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.