IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1070-d143402.html
   My bibliography  Save this article

Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications

Author

Listed:
  • Xing Luo

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Jihong Wang

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Jacek D. Wojcik

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Jianguo Wang

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Decai Li

    (School of Engineering, University of Warwick, Coventry CV4 7AL, UK)

  • Mihai Draganescu

    (UK National Grid, Warwick CV34 6DA, UK)

  • Yaowang Li

    (School of Electrical & Electronic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China)

  • Shihong Miao

    (School of Electrical & Electronic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China)

Abstract

To ensure the stability and reliability of the power network operation, a number of Grid Codes have been used to specify the technical boundary requirements for different countries and areas. With the fast propagation of the usage of Electrical Energy Storage (EES), it is quite important to study how the EES technology with its development can help the Grid Code realization. The paper provides a comprehensive study of Great Britain (GB) Grid Code mainly on its voltage and frequency relevant specifications, with a comparison of other countries’ grid operation regulations. The different types of EES technologies with their technical characteristics in relation to meeting Grid Codes have been analysed. From the study, apart from direct grid-connection to provide grid services on meeting Grid Codes, EES devices with different technologies can be used as auxiliary units in fossil-fuelled power plants and renewable generation to support the whole systems’ operation. The paper also evaluates the potentials of different types of EES technologies for implementing the relevant applications based on the Grid Codes. Some recommendations are given at the end, for the EES technology development to help the Grid Code realization and to support the relevant applications.

Suggested Citation

  • Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, vol. 11(5), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1070-:d:143402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julia Merino & Patricio Mendoza-Araya & Carlos Veganzones, 2014. "State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems," Energies, MDPI, vol. 7(12), pages 1-19, November.
    2. Lion Hirth & Inka Ziegenhagen, 2013. "Control Power and Variable Renewables A Glimpse at German Data," Working Papers 2013.46, Fondazione Eni Enrico Mattei.
    3. Jacek D. Wojcik & Jihong Wang, 2017. "Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle," Energies, MDPI, vol. 10(2), pages 1-19, February.
    4. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Iturregi, Araitz & Valverde, Victor, 2015. "Review of grid connection requirements for generation assets in weak power grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1501-1514.
    5. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks," Energies, MDPI, vol. 10(2), pages 1-16, January.
    6. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    7. Fabio Bignucolo & Roberto Caldon & Massimiliano Coppo & Fabio Pasut & Martino Pettinà, 2017. "Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve," Energies, MDPI, vol. 10(1), pages 1-22, January.
    8. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    9. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Effects of Energy Storage Systems Grid Code Requirements on Interface Protection Performances in Low Voltage Networks," Energies, MDPI, vol. 10(3), pages 1-20, March.
    10. Etxegarai, Agurtzane & Eguia, Pablo & Torres, Esther & Buigues, Garikoitz & Iturregi, Araitz, 2017. "Current procedures and practices on grid code compliance verification of renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 191-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Frequency Stability Issues and Research Opportunities in Converter Dominated Power System," Energies, MDPI, vol. 14(14), pages 1-28, July.
    2. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    3. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    4. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Soseul Jeong & Junghun Lee & Minhan Yoon & Gilsoo Jang, 2020. "Energy Storage System Event-Driven Frequency Control Using Neural Networks to Comply with Frequency Grid Code," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Saif Ul Islam & Kamran Zeb & Soobae Kim, 2022. "Design of Robust Fuzzy Logic Controller Based on Gradient Descent Algorithm with Parallel-Resonance Type Fault Current Limiter for Grid-Tied PV System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    8. Van-Hai Bui & Xuan Quynh Nguyen & Akhtar Hussain & Wencong Su, 2021. "Optimal Sizing of Energy Storage System for Operation of Wind Farms Considering Grid-Code Constraints," Energies, MDPI, vol. 14(17), pages 1-19, September.
    9. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    10. Saif Ul Islam & Soobae Kim, 2023. "Design of an Optimal Adoptive Fault Ride through Scheme for Overcurrent Protection of Grid-Forming Inverter-Based Resources under Symmetrical Faults," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    11. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Alexis B. Rey-Boué & N. F. Guerrero-Rodríguez & Johannes Stöckl & Thomas I. Strasser, 2019. "Modeling and Design of the Vector Control for a Three-Phase Single-Stage Grid-Connected PV System with LVRT Capability according to the Spanish Grid Code," Energies, MDPI, vol. 12(15), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    2. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    3. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    4. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    5. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    6. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    7. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    8. de Jong, Jacques & Hassel, Arndt & Egenhofer, Christian & Jansen, Jaap & Xu, Zheng, 2017. "Improving the Market for Flexibility in the Electricity Sector," CEPS Papers 13093, Centre for European Policy Studies.
    9. Llamas, Bernardo & Laín, Carlos & Castañeda, M. Cruz & Pous, Juan, 2018. "Mini-CAES as a reliable and novel approach to storing renewable energy in salt domes," Energy, Elsevier, vol. 144(C), pages 482-489.
    10. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    11. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Fu, Hailun & He, Qing & Song, Jintao & Shi, Xinping & Hao, Yinping & Du, Dongmei & Liu, Wenyi, 2021. "Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle," Energy, Elsevier, vol. 227(C).
    13. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    14. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    16. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    17. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    18. Guo, Huan & Xu, Yujie & Huang, Lujing & Zhu, Yilin & Liang, Qi & Chen, Haisheng, 2022. "Concise analytical solution and optimization of compressed air energy storage systems with thermal storage," Energy, Elsevier, vol. 258(C).
    19. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
    20. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1070-:d:143402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.