IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222016760.html
   My bibliography  Save this article

Concise analytical solution and optimization of compressed air energy storage systems with thermal storage

Author

Listed:
  • Guo, Huan
  • Xu, Yujie
  • Huang, Lujing
  • Zhu, Yilin
  • Liang, Qi
  • Chen, Haisheng

Abstract

The evaluation of compressed air energy storage (CAES) system mostly focused on system efficiency and cost, while less attention has been paid to energy density in the past, and each performance expression was complex, making it difficult to obtain clear variation law of multiple indexes with key parameters, as well as the optimal coupling relationship among them. In view of the above problems, the research on concise analytical solution of CAES systems with thermal storage (TS-CAES) is carried out in this paper, in which a dimensionless pressure coefficient K and the parameter Z to describe thermal storage characteristics are established. Based on the above parameters and simplified model, the concise analytical expression of system efficiency and energy density for constant-volume and constant-pressure CAES systems are established. Based on the analytical expression, the influence law of each key parameter on the system evaluation indexes is revealed, and the optimal matching relationship of key parameters is obtained. It is revealed that without considering the heat exchange temperature difference, the system efficiency is only related to the thermal storage temperature, K and the efficiency of compressor/expander. The greater the temperature and K are, the higher the system efficiency is. The higher the temperature and pressure are, the higher the energy density of the two systems is. The energy density is more sensitive to the value of Z with lower temperature and higher pressure. It is also found that there is an optimal K under a certain temperature and pressure to maximize the energy density for constant-volume CAES, and the optimal value of K corresponding to 200 bar and 100 °C is 0.77.

Suggested Citation

  • Guo, Huan & Xu, Yujie & Huang, Lujing & Zhu, Yilin & Liang, Qi & Chen, Haisheng, 2022. "Concise analytical solution and optimization of compressed air energy storage systems with thermal storage," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016760
    DOI: 10.1016/j.energy.2022.124773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheung, Brian C. & Carriveau, Rupp & Ting, David S.K., 2014. "Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm," Energy, Elsevier, vol. 74(C), pages 396-404.
    2. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).
    4. Xia, Caichu & Zhou, Yu & Zhou, Shuwei & Zhang, Pingyang & Wang, Fei, 2015. "A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns," Renewable Energy, Elsevier, vol. 74(C), pages 718-726.
    5. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    6. Guo, Huan & Xu, Yujie & Chen, Haisheng & Guo, Cong & Qin, Wei, 2017. "Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system," Applied Energy, Elsevier, vol. 199(C), pages 96-106.
    7. Courtois, Nicolas & Najafiyazdi, Mostafa & Lotfalian, Reza & Boudreault, Richard & Picard, Mathieu, 2021. "Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency," Applied Energy, Elsevier, vol. 288(C).
    8. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    9. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    10. Guo, Huan & Xu, Yujie & Zhu, Yilin & Zhou, Xuezhi & Chen, Haisheng, 2022. "Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems," Energy, Elsevier, vol. 244(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
    2. Guan, Yin & Li, Wen & Zhu, Yangli & Wang, Xing & Zhang, Yifeng & Chen, Haisheng, 2024. "Aerodynamic performance and flow field losses analysis: A study on nozzle governing turbine with varied regulated nozzle stator installation angle," Energy, Elsevier, vol. 300(C).
    3. Olusola Fajinmi & Josiah L. Munda & Yskandar Hamam & Olawale Popoola, 2023. "Compressed Air Energy Storage as a Battery Energy Storage System for Various Application Domains: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    4. Sun, Enhui & Ji, Hongfu & Wang, Xiangren & Ma, Wenjing & Zhang, Lei & Xu, Jinliang, 2023. "Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S–CO2 cycle," Energy, Elsevier, vol. 270(C).
    5. Guan, Yin & Li, Wen & Zhu, Yangli & Wang, Xing & Zhang, Yifeng & Chen, Haisheng, 2024. "Energy loss analysis in two-stage turbine of compressed air energy storage system: Effect of varying partial admission ratio and inlet pressure," Energy, Elsevier, vol. 305(C).
    6. Zhang, Yufei & Jin, Peng & Wang, Haiyang & Cai, Xuchao & Ge, Gangqiang & Chen, Hao & Wang, Huanran & Li, Ruixiong, 2024. "Dimensionless thermal performance analysis of a closed isothermal compressed air energy storage system with spray-enhanced heat transfer," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei & Ling, Lanning, 2023. "Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system," Energy, Elsevier, vol. 280(C).
    2. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    4. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    6. Guo, Huan & Xu, Yujie & Huang, Lujing & Sun, Jianting & Chen, Haisheng, 2023. "Optimization strategy using corresponding-point methodology (CPM) concerning finite time and heat conduction rate for CAES systems," Energy, Elsevier, vol. 266(C).
    7. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    8. Chen, Wei & Bai, Jianshu & Wang, Guohua & Xie, Ningning & Ma, Linrui & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2023. "First and second law analysis and operational mode optimization of the compression process for an advanced adiabatic compressed air energy storage based on the established comprehensive dynamic model," Energy, Elsevier, vol. 263(PC).
    9. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    10. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    11. Jan Markowski & Jacek Leszczyński & Paula Fernanda Varandas Ferreira & Géremi Gilson Dranka & Dominik Gryboś, 2024. "Analysis of Electricity Supply and Demand Balance in Residential Microgrids Integrated with Micro-CAES in Northern Portugal," Energies, MDPI, vol. 17(19), pages 1-17, October.
    12. Guo, Huan & Xu, Yujie & Chen, Haisheng & Guo, Cong & Qin, Wei, 2017. "Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system," Applied Energy, Elsevier, vol. 199(C), pages 96-106.
    13. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    14. Guo, Huan & Xu, Yujie & Chen, Haisheng & Zhang, Xinjing & Qin, Wei, 2018. "Corresponding-point methodology for physical energy storage system analysis and application to compressed air energy storage system," Energy, Elsevier, vol. 143(C), pages 772-784.
    15. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    16. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    17. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    18. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    19. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    20. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.