IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1657-d340705.html
   My bibliography  Save this article

Energy Storage System Event-Driven Frequency Control Using Neural Networks to Comply with Frequency Grid Code

Author

Listed:
  • Soseul Jeong

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Junghun Lee

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

  • Minhan Yoon

    (Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Korea)

  • Gilsoo Jang

    (School of Electrical Engineering, Korea University, Seoul 02841, Korea)

Abstract

As the penetration of renewable energy sources (RESs) increases, the rate of conventional generators and the power system inertia are reduced accordingly, resulting in frequency-stability concerns. As one of the solutions, the battery-type energy storage system (ESS), which can rapidly charge and discharge energy, is utilized for frequency regulation. Typically, it is based on response-driven frequency control (RDFC), which adjusts its output according to the measured frequency. In contrast, event-driven frequency control (EDFC) involves a determined frequency support scheme corresponding to a particular event. EDFC has the advantage that control action is promptly performed compared to RDFC. This study proposes an ESS EDFC strategy that involves estimating the required operating point of the ESS according to a specific disturbance through neural-network training. When a disturbance occurs, the neural networks can estimate the proper magnitude and duration of the ESS output to comply with the frequency grid code. A simulation to validate the proposed control method was performed for an IEEE 39 bus system. The simulation results indicate that a neural-network estimation offers sufficient accuracy for practical use, and frequency response can be adjusted as intended by the system operator.

Suggested Citation

  • Soseul Jeong & Junghun Lee & Minhan Yoon & Gilsoo Jang, 2020. "Energy Storage System Event-Driven Frequency Control Using Neural Networks to Comply with Frequency Grid Code," Energies, MDPI, vol. 13(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1657-:d:340705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, vol. 11(5), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    2. Józef Borkowski & Mirosław Szmajda & Janusz Mroczka, 2021. "The Influence of Power Network Disturbances on Short Delayed Estimation of Fundamental Frequency Based on IpDFT Method with GMSD Windows," Energies, MDPI, vol. 14(20), pages 1-26, October.
    3. Amer S. Alsalman & Talal Alharbi & Ahmed A. Mahfouz, 2023. "Enhancing the Stability of an Isolated Electric Grid by the Utilization of Energy Storage Systems: A Case Study on the Rafha Grid," Sustainability, MDPI, vol. 15(17), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    2. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    3. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    4. Saif Ul Islam & Kamran Zeb & Soobae Kim, 2022. "Design of Robust Fuzzy Logic Controller Based on Gradient Descent Algorithm with Parallel-Resonance Type Fault Current Limiter for Grid-Tied PV System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    5. Van-Hai Bui & Xuan Quynh Nguyen & Akhtar Hussain & Wencong Su, 2021. "Optimal Sizing of Energy Storage System for Operation of Wind Farms Considering Grid-Code Constraints," Energies, MDPI, vol. 14(17), pages 1-19, September.
    6. Alexis B. Rey-Boué & N. F. Guerrero-Rodríguez & Johannes Stöckl & Thomas I. Strasser, 2019. "Modeling and Design of the Vector Control for a Three-Phase Single-Stage Grid-Connected PV System with LVRT Capability according to the Spanish Grid Code," Energies, MDPI, vol. 12(15), pages 1-28, July.
    7. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    9. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    10. Saif Ul Islam & Soobae Kim, 2023. "Design of an Optimal Adoptive Fault Ride through Scheme for Overcurrent Protection of Grid-Forming Inverter-Based Resources under Symmetrical Faults," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    11. Ashish Shrestha & Francisco Gonzalez-Longatt, 2021. "Frequency Stability Issues and Research Opportunities in Converter Dominated Power System," Energies, MDPI, vol. 14(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1657-:d:340705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.