IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1059-d143241.html
   My bibliography  Save this article

Model for Estimation of Fuel Consumption of Cruise Ships

Author

Listed:
  • Morten Simonsen

    (Western Norway Research Institute, 6851 Sogndal, Norway)

  • Hans Jakob Walnum

    (Western Norway Research Institute, 6851 Sogndal, Norway)

  • Stefan Gössling

    (Western Norway Research Institute, 6851 Sogndal, Norway
    School of Business and Economics, Linnaeus University, 39182 Kalmar, Sweden)

Abstract

This article presents a model to estimate the energy use and fuel consumption of cruise ships that sail Norwegian waters. Automatic identification system (AIS) data and technical information about cruise ships provided input to the model, including service speed, total power, and number of engines. The model was tested against real-world data obtained from a small cruise vessel and both a medium and large cruise ship. It is sensitive to speed and the corresponding engine load profile of the ship. A crucial determinate for total fuel consumption is also associated with hotel functions, which can make a large contribution to the overall energy use of cruise ships. Real-world data fits the model best when ship speed is 70–75% of service speed. With decreased or increased speed, the model tends to diverge from real-world observations. The model gives a proxy for calculation of fuel consumption associated with cruise ships that sail to Norwegian waters and can be used to estimate greenhouse gas emissions and to evaluate energy reduction strategies for cruise ships.

Suggested Citation

  • Morten Simonsen & Hans Jakob Walnum & Stefan Gössling, 2018. "Model for Estimation of Fuel Consumption of Cruise Ships," Energies, MDPI, vol. 11(5), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1059-:d:143241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnson, David, 2002. "Environmentally sustainable cruise tourism: a reality check," Marine Policy, Elsevier, vol. 26(4), pages 261-270, July.
    2. Shi, Yubing, 2016. "Reducing greenhouse gas emissions from international shipping: Is it time to consider market-based measures?," Marine Policy, Elsevier, vol. 64(C), pages 123-134.
    3. Bonilla-Priego, Mª Jesús & Font, Xavier & Pacheco-Olivares, Mª del Rosario, 2014. "Corporate sustainability reporting index and baseline data for the cruise industry," Tourism Management, Elsevier, vol. 44(C), pages 149-160.
    4. Yuan, Jun & Ng, Szu Hui & Sou, Weng Sut, 2016. "Uncertainty quantification of CO2 emission reduction for maritime shipping," Energy Policy, Elsevier, vol. 88(C), pages 113-130.
    5. Alice Bows-Larkin, 2015. "All adrift: aviation, shipping, and climate change policy," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 681-702, November.
    6. Howitt, Oliver J.A. & Revol, Vincent G.N. & Smith, Inga J. & Rodger, Craig J., 2010. "Carbon emissions from international cruise ship passengers' travel to and from New Zealand," Energy Policy, Elsevier, vol. 38(5), pages 2552-2560, May.
    7. Butt, Nickie, 2007. "The impact of cruise ship generated waste on home ports and ports of call: A study of Southampton," Marine Policy, Elsevier, vol. 31(5), pages 591-598, September.
    8. Moreno-Gutiérrez, Juan & Calderay, Fátima & Saborido, Nieves & Boile, Maria & Rodríguez Valero, Rafael & Durán-Grados, Vanesa, 2015. "Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods," Energy, Elsevier, vol. 86(C), pages 603-616.
    9. Kevin Capaldo & James J. Corbett & Prasad Kasibhatla & Paul Fischbeck & Spyros N. Pandis, 1999. "Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean," Nature, Nature, vol. 400(6746), pages 743-746, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Børge Heggen Johansen & Dina Margrethe Aspen & Magnus Sparrevik & Vilmar Æsøy, 2021. "Applying System-Oriented Sustainability Scoring for Cruise Traffic Port Operators: A Case Study of Geiranger, Norway," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    3. Michael E. Stamatakis & Maria G. Ioannides, 2021. "State Transitions Logical Design for Hybrid Energy Generation with Renewable Energy Sources in LNG Ship," Energies, MDPI, vol. 14(22), pages 1-26, November.
    4. Simonsen, Morten & Gössling, Stefan & Walnum, Hans Jakob, 2019. "Cruise ship emissions in Norwegian waters: A geographical analysis," Journal of Transport Geography, Elsevier, vol. 78(C), pages 87-97.
    5. Tomasz Cepowski & Paweł Chorab, 2021. "The Use of Artificial Neural Networks to Determine the Engine Power and Fuel Consumption of Modern Bulk Carriers, Tankers and Container Ships," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Andrzej Łebkowski, 2018. "Reduction of Fuel Consumption and Pollution Emissions in Inland Water Transport by Application of Hybrid Powertrain," Energies, MDPI, vol. 11(8), pages 1-16, July.
    7. Guomin Li & Wei Li & Yinke Dou & Yigang Wei, 2022. "Antarctic Shipborne Tourism: Carbon Emission and Mitigation Path," Energies, MDPI, vol. 15(21), pages 1-17, October.
    8. Francesco Baldi & Fredrik Ahlgren & Tuong-Van Nguyen & Marcus Thern & Karin Andersson, 2018. "Energy and Exergy Analysis of a Cruise Ship," Energies, MDPI, vol. 11(10), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simonsen, Morten & Gössling, Stefan & Walnum, Hans Jakob, 2019. "Cruise ship emissions in Norwegian waters: A geographical analysis," Journal of Transport Geography, Elsevier, vol. 78(C), pages 87-97.
    2. Di Vaio, Assunta & Varriale, Luisa & Trujillo, Lourdes, 2019. "Management Control Systems in port waste management: Evidence from Italy," Utilities Policy, Elsevier, vol. 56(C), pages 127-135.
    3. Eunice O. Olaniyi & Gunnar Prause & Vera Gerasimova & Tommi Inkinen, 2022. "Clean Cruise Shipping: Experience from the BSR," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    4. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    5. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    6. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    7. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. Joanna Kizielewicz, 2020. "Measuring the Economic and Social Contribution of Cruise Tourism Development to Coastal Tourist Destinations," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 147-171.
    9. Anastasia Christodoulou & Kevin Cullinane, 2024. "The prospects for, and implications of, emissions trading in shipping," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(1), pages 168-184, March.
    10. María J. Andrade & João Pedro Costa & Eduardo Jiménez-Morales, 2021. "Challenges for European Tourist-City-Ports: Strategies for a Sustainable Coexistence in the Cruise Post-COVID Context," Land, MDPI, vol. 10(11), pages 1-20, November.
    11. Rosa-Jiménez, Carlos & Perea-Medina, Beatriz & Andrade, María J. & Nebot, Nuria, 2018. "An examination of the territorial imbalance of the cruising activity in the main Mediterranean port destinations: Effects on sustainable transport," Journal of Transport Geography, Elsevier, vol. 68(C), pages 94-101.
    12. Esther Vayá & José Ramón García & Joaquim Murillo & Javier Romaní & Jordi Suriñach, 2016. "“Economic Impact of Cruise Activity: The Port of Barcelona”," AQR Working Papers 201609, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2016.
    13. Wang, Shuaian & Zhen, Lu & Zhuge, Dan, 2018. "Dynamic programming algorithms for selection of waste disposal ports in cruise shipping," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 235-248.
    14. Styliani Livaniou & Georgios Chatzistelios & Dimitrios V. Lyridis & Evangelos Bellos, 2022. "LNG vs. MDO in Marine Fuel Emissions Tracking," Sustainability, MDPI, vol. 14(7), pages 1-12, March.
    15. Joanna Kizielewicz, 2020. "Typology and Models of Cruise Travellers’ Consumption in Coastal Tourist Destinations," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 679-698.
    16. Irina Svaetichin & Tommi Inkinen, 2017. "Port Waste Management in the Baltic Sea Area: A Four Port Study on the Legal Requirements, Processes and Collaboration," Sustainability, MDPI, vol. 9(5), pages 1-17, April.
    17. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    18. Vanessa Durán-Grados & Yolanda Amado-Sánchez & Fátima Calderay-Cayetano & Rubén Rodríguez-Moreno & Emilio Pájaro-Velázquez & Antonio Ramírez-Sánchez & Sofia I. V. Sousa & Rafael A. O. Nunes & Maria C., 2020. "Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    19. Cheng-Wen Lee & Chi-Hsi Wang, 2021. "Value Analysis and Value Engineering on the Sustainability of Global Sourcing Competitiveness," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 11(6), pages 1-1.
    20. Athanasios A. Pallis & Aimilia A. Papachristou & Charalampos Platias, 2017. "Environmental policies and practices in Cruise Ports: Waste reception facilities in the Med," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 67(1), pages 54-70, January-M.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1059-:d:143241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.