IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v108y2018icp235-248.html
   My bibliography  Save this article

Dynamic programming algorithms for selection of waste disposal ports in cruise shipping

Author

Listed:
  • Wang, Shuaian
  • Zhen, Lu
  • Zhuge, Dan

Abstract

The cruise industry has maintained a steady growth in the past 20 years. Due to the large number of cruise passengers and regulations on sea environment protection, determining at which ports to dispose of the waste generated onboard a cruise ship is a key decision to reduce the cost for a cruise company. We address four versions of the problem: the cruise itinerary is either static or dynamic and the amount of waste generated on each voyage leg is either deterministic or stochastic. We propose a polynomial-time solution algorithm for the static deterministic model, and the idea of the algorithm can also be used to solve the static stochastic model and the dynamic deterministic model. Second, we identify the structure of the optimal policy to the dynamic stochastic problem, based on which an efficient dynamic programming algorithm is developed. Extensive numerical experiments derived from problems of real-case scales demonstrate the efficiency of the proposed algorithms.

Suggested Citation

  • Wang, Shuaian & Zhen, Lu & Zhuge, Dan, 2018. "Dynamic programming algorithms for selection of waste disposal ports in cruise shipping," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 235-248.
  • Handle: RePEc:eee:transb:v:108:y:2018:i:c:p:235-248
    DOI: 10.1016/j.trb.2017.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517303326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
    2. Oded Berman & Richard C. Larson, 2001. "Deliveries in an Inventory/Routing Problem Using Stochastic Dynamic Programming," Transportation Science, INFORMS, vol. 35(2), pages 192-213, May.
    3. Lara Penco & Assunta Di Vaio, 2014. "Monetary and non-monetary value creation in cruise port destinations: an empirical assessment," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(5), pages 501-513, September.
    4. Johnson, David, 2002. "Environmentally sustainable cruise tourism: a reality check," Marine Policy, Elsevier, vol. 26(4), pages 261-270, July.
    5. Zhen, Lu & Wang, Kai & Wang, Shuaian & Qu, Xiaobo, 2018. "Tug scheduling for hinterland barge transport: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 265(1), pages 119-132.
    6. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    7. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    8. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    9. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    10. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    11. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    12. Shuaian Wang & Kai Wang & Lu Zhen & Xiaobo Qu, 2017. "Cruise itinerary schedule design," IISE Transactions, Taylor & Francis Journals, vol. 49(6), pages 622-641, June.
    13. Butt, Nickie, 2007. "The impact of cruise ship generated waste on home ports and ports of call: A study of Southampton," Marine Policy, Elsevier, vol. 31(5), pages 591-598, September.
    14. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    15. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.
    16. Maddah, Bacel & Moussawi-Haidar, Lama & El-Taha, Muhammad & Rida, Hussein, 2010. "Dynamic cruise ship revenue management," European Journal of Operational Research, Elsevier, vol. 207(1), pages 445-455, November.
    17. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.
    2. Haoqing Wang & Wen Yi & Yannick Liu, 2022. "Optimal Route Design for Construction Waste Transportation Systems: Mathematical Models and Solution Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    3. Ondrej Stopka & Maria Stopkova & Rudolf Kampf, 2019. "Application of the Operational Research Method to Determine the Optimum Transport Collection Cycle of Municipal Waste in a Predesignated Urban Area," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    4. Shen, Lixin & Wang, Yaodong & Liu, Kunpeng & Yang, Zaili & Shi, Xiaowen & Yang, Xu & Jing, Ke, 2020. "Synergistic path planning of multi-UAVs for air pollution detection of ships in ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Liling Huang & Yong Tan & Xiongping Yue, 2024. "Optimizing Route and Speed under the Sulfur Emission Control Areas for a Cruise Liner: A New Strategy Considering Route Competitiveness and Low Carbon," Mathematics, MDPI, vol. 12(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kai & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2017. "Cruise service planning considering berth availability and decreasing marginal profit," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 1-18.
    2. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    3. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    4. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
    5. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    6. Beullens, Patrick & Ge, Fangsheng & Hudson, Dominic, 2023. "The economic ship speed under time charter contract—A cash flow approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    7. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    8. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    9. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    10. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    11. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    12. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    13. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    14. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    15. Wang, Shuaian & Wang, Hua & Meng, Qiang, 2015. "Itinerary provision and pricing in container liner shipping revenue management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 135-146.
    16. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    17. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    18. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.
    19. Ge, Fangsheng & Beullens, Patrick & Hudson, Dominic, 2021. "Optimal economic ship speeds, the chain effect, and future profit potential," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 168-196.
    20. Kim, Hwa-Joong & Lam, Jasmine Siu Lee & Lee, Paul Tae-Woo, 2018. "Analysis of liner shipping networks and transshipment flows of potential hub ports in sub-Saharan Africa," Transport Policy, Elsevier, vol. 69(C), pages 193-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:108:y:2018:i:c:p:235-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.