IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p1010-d142330.html
   My bibliography  Save this article

The Impact of Drive Cycles and Auxiliary Power on Passenger Car Fuel Economy

Author

Listed:
  • Thomas Grube

    (Institute of Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany)

  • Detlef Stolten

    (Institute of Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    Chair for Fuel Cells, RWTH Aachen University, 52056 Aachen, Germany)

Abstract

In view of the advancement of zero emission transportation and current discussions on the reliability of nominal passenger car fuel economy, this article considers the procedure for assessing the potential for reducing the fuel consumption of passenger cars by using electric power to operate them. The analysis compares internal combustion engines, hybrid and fully electric concepts utilizing batteries and fuel cells. The starting point for the newly developed, simulation-based fuel consumption analysis is a longitudinal vehicle model. Mechanical power requirements on the drive side incorporate a large variety of standardized drive cycles to simulate typical patterns of car usage. The power requirements of electric heating and air conditioning are also included in the simulation, as these are especially relevant to electric powertrains. Moreover, on-board grid-load profiles are considered in the assessment. Fuel consumption is optimized by applying concept-specific operating strategies. The results show that the combination of low average driving speed and elevated onboard power requirements have severe impacts on the fuel efficiency of all powertrain configurations analyzed. In particular, the operational range of battery-electric vehicles is strongly affected by this due to the limited storage capacity of today’s batteries. The analysis confirms the significance of considering different load patterns of vehicle usage related to driving profiles and onboard electrical and thermal loads.

Suggested Citation

  • Thomas Grube & Detlef Stolten, 2018. "The Impact of Drive Cycles and Auxiliary Power on Passenger Car Fuel Economy," Energies, MDPI, vol. 11(4), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:1010-:d:142330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/1010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/1010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
    2. DeCicco, John M., 2013. "Factoring the car-climate challenge: Insights and implications," Energy Policy, Elsevier, vol. 59(C), pages 382-392.
    3. Gupta, S. & Patil, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis," Energy, Elsevier, vol. 96(C), pages 684-698.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    2. Atiquzzaman Khan Ankur & Stefan Kraus & Thomas Grube & Rui Castro & Detlef Stolten, 2022. "A Versatile Model for Estimating the Fuel Consumption of a Wide Range of Transport Modes," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Frederik vom Scheidt & Jingyi Qu & Philipp Staudt & Dharik S. Mallapragada & Christof Weinhardt, 2021. "Integrating Hydrogen in Single-Price Electricity Systems: The Effects of Spatial Economic Signals," Papers 2105.00130, arXiv.org, revised Nov 2021.
    4. Orkhan Nadirov & Jana Vychytilová & Bruce Dehning, 2020. "Carbon Taxes and the Composition of New Passenger Car Sales in Europe," Energies, MDPI, vol. 13(18), pages 1-15, September.
    5. Carmen Raga & Andres Barrado & Henry Miniguano & Antonio Lazaro & Isabel Quesada & Alberto Martin-Lozano, 2018. "Analysis and Sizing of Power Distribution Architectures Applied to Fuel Cell Based Vehicles," Energies, MDPI, vol. 11(10), pages 1-30, September.
    6. vom Scheidt, Frederik & Qu, Jingyi & Staudt, Philipp & Mallapragada, Dharik S. & Weinhardt, Christof, 2022. "Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals," Energy Policy, Elsevier, vol. 161(C).
    7. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    9. Zhe Kang & Zhehao Zhang & Jun Deng & Liguang Li & Zhijun Wu, 2019. "Experimental Research of High-Temperature and High-Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions," Energies, MDPI, vol. 12(9), pages 1-17, May.
    10. Adrian König & Sebastian Mayer & Lorenzo Nicoletti & Stephan Tumphart & Markus Lienkamp, 2022. "The Impact of HVAC on the Development of Autonomous and Electric Vehicle Concepts," Energies, MDPI, vol. 15(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    2. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    3. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    4. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Koszalka, Grzegorz & Hunicz, Jacek, 2021. "Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion," Energy, Elsevier, vol. 235(C).
    6. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    7. Abas, N. & Kalair, A. & Khan, N. & Kalair, A.R., 2017. "Review of GHG emissions in Pakistan compared to SAARC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 990-1016.
    8. Muralidhar, Nischal & Himabindu, M. & Ravikrishna, R.V., 2018. "Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator," Energy, Elsevier, vol. 148(C), pages 1046-1059.
    9. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    10. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    11. Vedrenne, Michel & Pérez, Javier & Lumbreras, Julio & Rodríguez, María Encarnación, 2014. "Life cycle assessment as a policy-support tool: The case of taxis in the city of Madrid," Energy Policy, Elsevier, vol. 66(C), pages 185-197.
    12. John M. DeCicco, 2015. "The liquid carbon challenge: evolving views on transportation fuels and climate," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 98-114, January.
    13. Klaus Lieutenant & Ana Vassileva Borissova & Mohamad Mustafa & Nick McCarthy & Ioan Iordache, 2022. "Comparison of “Zero Emission” Vehicles with Petrol and Hybrid Cars in Terms of Total CO 2 Release—A Case Study for Romania, Poland, Norway and Germany," Energies, MDPI, vol. 15(21), pages 1-13, October.
    14. John DeCicco, 2013. "Biofuel’s carbon balance: doubts, certainties and implications," Climatic Change, Springer, vol. 121(4), pages 801-814, December.
    15. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide & Lozza, Giovanni Gustavo, 2024. "Analyzing the global warming potential of the production and utilization of lithium-ion batteries with nickel-manganese-cobalt cathode chemistries in European Gigafactories," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:1010-:d:142330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.