Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.03.196
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuan, Xinmei & Li, Lili & Gou, Huadong & Dong, Tingting, 2015. "Energy and environmental impact of battery electric vehicle range in China," Applied Energy, Elsevier, vol. 157(C), pages 75-84.
- Shen, Wei & Han, Weijian & Chock, David & Chai, Qinhu & Zhang, Aling, 2012. "Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China," Energy Policy, Elsevier, vol. 49(C), pages 296-307.
- Torchio, Marco F. & Santarelli, Massimo G., 2010. "Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs – European market analysis," Energy, Elsevier, vol. 35(10), pages 4156-4171.
- Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
- Johnson, Derek R. & Heltzel, Robert & Nix, Andrew C. & Clark, Nigel & Darzi, Mahdi, 2017. "Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development," Applied Energy, Elsevier, vol. 206(C), pages 739-750.
- Rahman, Md. Mustafizur & Canter, Christina & Kumar, Amit, 2015. "Well-to-wheel life cycle assessment of transportation fuels derived from different North American conventional crudes," Applied Energy, Elsevier, vol. 156(C), pages 159-173.
- Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
- Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
- Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
- Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
- Rose, Lars & Hussain, Mohammed & Ahmed, Syed & Malek, Kourosh & Costanzo, Robert & Kjeang, Erik, 2013. "A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city," Energy Policy, Elsevier, vol. 52(C), pages 453-461.
- Xu, Yanzhi & Gbologah, Franklin E. & Lee, Dong-Yeon & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall L., 2015. "Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling," Applied Energy, Elsevier, vol. 154(C), pages 143-159.
- Di Lullo, Giovanni & Zhang, Hao & Kumar, Amit, 2016. "Evaluation of uncertainty in the well-to-tank and combustion greenhouse gas emissions of various transportation fuels," Applied Energy, Elsevier, vol. 184(C), pages 413-426.
- Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
- Curran, Scott J. & Wagner, Robert M. & Graves, Ronald L. & Keller, Martin & Green, Johney B., 2014. "Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles," Energy, Elsevier, vol. 75(C), pages 194-203.
- Kakaee, Amir-Hasan & Paykani, Amin, 2013. "Research and development of natural-gas fueled engines in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 805-821.
- Gupta, S. & Patil, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis," Energy, Elsevier, vol. 96(C), pages 684-698.
- Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
- Lee, Dong-Yeon & Elgowainy, Amgad & Dai, Qiang, 2018. "Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States," Applied Energy, Elsevier, vol. 217(C), pages 467-479.
- Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
- Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
- Bongartz, Dominik & Doré, Larissa & Eichler, Katharina & Grube, Thomas & Heuser, Benedikt & Hombach, Laura E. & Robinius, Martin & Pischinger, Stefan & Stolten, Detlef & Walther, Grit & Mitsos, Alexan, 2018. "Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide," Applied Energy, Elsevier, vol. 231(C), pages 757-767.
- Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.
- Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Jianbo & Wang, Zhiyuan & Liu, Shun & Zhang, Weiguo & Yu, Jing & Sun, Baojiang, 2019. "Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- El Hafdaoui, Hamza & Jelti, Faissal & Khallaayoun, Ahmed & Jamil, Abdelmajid & Ouazzani, Kamar, 2024. "Energy and environmental evaluation of alternative fuel vehicles in Maghreb countries," Innovation and Green Development, Elsevier, vol. 3(1).
- Faaiz Al-shajalee & Colin Wood & Quan Xie & Ali Saeedi, 2019. "Effective Mechanisms to Relate Initial Rock Permeability to Outcome of Relative Permeability Modification," Energies, MDPI, vol. 12(24), pages 1-17, December.
- Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
- Chen, Yimin & Xu, Changan & Vaidyanathan, Seetharaman, 2020. "Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production," Applied Energy, Elsevier, vol. 261(C).
- Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
- Kanwal, Saira & Mehran, Muhammad Taqi & Hassan, Muhammad & Anwar, Mustafa & Naqvi, Salman Raza & Khoja, Asif Hussain, 2022. "An integrated future approach for the energy security of Pakistan: Replacement of fossil fuels with syngas for better environment and socio-economic development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
- Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
- Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
- Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
- Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
- Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
- Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
- Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
- Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
- Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
- Xu Hu & Jinwei Sun & Yisong Chen & Qiu Liu & Liang Gu, 2019. "Considering Well-to-Wheels Analysis in Control Design: Regenerative Suspension Helps to Reduce Greenhouse Gas Emissions from Battery Electric Vehicles," Energies, MDPI, vol. 12(13), pages 1-19, July.
- Mansour, Charbel J. & Haddad, Marc G., 2017. "Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: A case-study of road transport in Lebanon," Energy Policy, Elsevier, vol. 107(C), pages 167-181.
- Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018.
"Pathways toward zero-carbon electricity required for climate stabilization,"
Applied Energy, Elsevier, vol. 225(C), pages 884-901.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," Working Papers hal-01079837, HAL.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Celine, 2014. "Pathways toward zero-carbon electricity required for climate stabilization," Policy Research Working Paper Series 7075, The World Bank.
- Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2017. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," IDB Publications (Working Papers) 8498, Inter-American Development Bank.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch, 2014. "Pathways toward Zero-Carbon Electricity Required for Climate Stabilization," CIRED Working Papers hal-01079837, HAL.
- Richard Audoly & Adrien Vogt-Schilb & Céline Guivarch & Alexander Pfeiffer, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Post-Print halshs-01804564, HAL.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
- Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
- Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
- Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
- Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
More about this item
Keywords
Well-to-wheel; GHG emissions; Natural gas vehicles; Automotive fuels;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1738-1752. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.