IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221016364.html
   My bibliography  Save this article

Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion

Author

Listed:
  • Koszalka, Grzegorz
  • Hunicz, Jacek

Abstract

Low-temperature combustion in homogeneous charge compression ignition (HCCI) engine is one of the most promising technologies allowing to meet future emission targets for internal combustion engines. Whereas majority of research is centred on combustion itself, this paper for the first time points out the piston's energy losses induced by friction and blow-by in HCCI engine with negative valve overlap. The energy losses for HCCI and spark ignition (SI) operating modes were compared and thoroughly analysed with the use of the ring pack model. The input data for the simulations came from measurements made on a single-cylinder research engine capable of dual-mode combustion. The energy losses associated with friction of the rings against the cylinder varied from 8.2% of the indicated energy at the lowest load to 2.2% at the highest load tested, and were higher than in the SI mode by approximately 7%. The losses due to the gas leakage through the ring pack in the HCCI mode varied from 8% to 3.3%, respectively, and these losses were about twice as high as in the SI engine. The results demonstrated that energy losses due to blow-by are comparable with the friction losses of the rings, which are usually regarded as the prime source of inefficiency.

Suggested Citation

  • Koszalka, Grzegorz & Hunicz, Jacek, 2021. "Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016364
    DOI: 10.1016/j.energy.2021.121388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Lei & Hua, Jianxiong & Liu, Feng & Liu, Fengnian & Feng, Dengquan & Wei, Haiqiao, 2018. "Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions," Energy, Elsevier, vol. 164(C), pages 306-315.
    2. Patil, V. & Shastry, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2 – Well-to-wheels analysis," Energy, Elsevier, vol. 96(C), pages 699-712.
    3. Zhang, Y. & Zhao, H., 2014. "Investigation of combustion, performance and emission characteristics of 2-stroke and 4-stroke spark ignition and CAI/HCCI operations in a DI gasoline," Applied Energy, Elsevier, vol. 130(C), pages 244-255.
    4. Gupta, S. & Patil, V. & Himabindu, M. & Ravikrishna, R.V., 2016. "Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis," Energy, Elsevier, vol. 96(C), pages 684-698.
    5. Hunicz, Jacek & Medina, Alejandro, 2016. "Experimental study on detailed emissions speciation of an HCCI engine equipped with a three-way catalytic converter," Energy, Elsevier, vol. 117(P2), pages 388-397.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Hunicz, Jacek & Mikulski, Maciej & Koszałka, Grzegorz & Ignaciuk, Piotr, 2020. "Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions," Applied Energy, Elsevier, vol. 280(C).
    8. Liu, Mao-Bin & He, Bang-Quan & Zhao, Hua, 2015. "Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol," Energy, Elsevier, vol. 85(C), pages 296-303.
    9. Hunicz, Jacek & Mikulski, Maciej & Geca, Michal S. & Rybak, Arkadiusz, 2020. "An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap," Applied Energy, Elsevier, vol. 257(C).
    10. Correa, G. & Muñoz, P.M. & Rodriguez, C.R., 2019. "A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Wróblewski & Stanisław Kachel, 2024. "Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines," Energies, MDPI, vol. 17(15), pages 1-25, July.
    2. Grzegorz Koszalka & Andrzej Wolff, 2023. "Frictional Losses of Ring Pack in SI and HCCI Engine," Energies, MDPI, vol. 16(24), pages 1-17, December.
    3. Grzegorz Koszalka & Paweł Krzaczek, 2022. "Energy Losses Related to Ring Pack Wear in Gasoline Car Engine," Energies, MDPI, vol. 15(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Koszalka & Andrzej Wolff, 2023. "Frictional Losses of Ring Pack in SI and HCCI Engine," Energies, MDPI, vol. 16(24), pages 1-17, December.
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    3. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    4. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    5. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    6. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    7. Hunicz, Jacek & Mikulski, Maciej & Koszałka, Grzegorz & Ignaciuk, Piotr, 2020. "Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions," Applied Energy, Elsevier, vol. 280(C).
    8. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    9. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    10. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Thomas Grube & Detlef Stolten, 2018. "The Impact of Drive Cycles and Auxiliary Power on Passenger Car Fuel Economy," Energies, MDPI, vol. 11(4), pages 1-26, April.
    12. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    13. Abas, N. & Kalair, A. & Khan, N. & Kalair, A.R., 2017. "Review of GHG emissions in Pakistan compared to SAARC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 990-1016.
    14. Muralidhar, Nischal & Himabindu, M. & Ravikrishna, R.V., 2018. "Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator," Energy, Elsevier, vol. 148(C), pages 1046-1059.
    15. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    16. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    17. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    18. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    19. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    20. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.